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Abstract

Artificial intelligence (AI) has rapidly advanced and influenced all scientific fields, including the petroleum industry,
where it is no longer a novel concept. This article explores the evolving role of Al and its integration with traditional
reservoir simulation approaches. The first section highlights the diminishing emphasis on conceptual and mathematical
modelling in reservoir simulation, with a growing focus on sophisticated numerical solution techniques. This shift often
neglects fundamental reservoir physics and mathematics, leading to the superficial characterization of multi-phase
fluid flow in petroleum reservoirs. The second section examines the prevalent use of petroleum software packages, which
heavily rely on input data without accounting for variations in data scales. These tools treat underlying programming as
a black box, often bypassing critical basic sciences, such as reservoir conceptualization, applied mathematics, and nu-
merical techniques, resulting in incomplete reservoir characterization. The third section discusses the role of machine
learning (ML) and Al in reservoir applications. While data science plays a pivotal role, the lack of integration with fun-
damental reservoir physics reduces fluid flow analysis to an art devoid of scientific rigour. The final section proposes a
hybrid approach that couples AI/ML with traditional reservoir simulation. This integration bridges the gap between
science-based reservoir simulation and Al-driven fluid flow characterization, enabling the petroleum industry to achieve
a new paradigm for multi-phase fluid flow analysis. By combining fundamental science with advanced Al techniques,
this approach offers a comprehensive framework for accurate reservoir characterization and improved hydrocarbon pro-
duction.

Keywords:

artificial intelligence, machine learning, reservoir simulation, conceptual model, mathematical model, numerical model

The adoption of Al and ML in the upstream industry
is steadily increasing, with numerous applications show-
casing their potential. The Al market in the upstream
sector is expected to grow from $2.8 billion in 2023 to
$5.1 billion by 2028. Al primarily focuses on creating
machines that mimic human intelligence, encompassing
a broad range of technologies. Within Al, ML represents
a subset that builds models on pre-trained data, identify-
ing patterns to predict outcomes (Bhattacharya, 2021).
Deep Learning (DL), a further specialized subset of ML,

1. Introduction

Post-pandemic, the world is gradually returning to
pre-pandemic normalcy in terms of hydrocarbon con-
sumption, despite ongoing geopolitical challenges.
Studies project an average global GDP growth rate of
3% until 2030, with emerging economies playing a cru-
cial role. As hydrocarbons continue to be a key driver of
this growth, their exploration and utilisation must be op-
timised for maximum efficiency. In this evolving land-

scape, advanced technologies such as Artificial Intelli-
gence (Al) and Machine Learning (ML) are rapidly pro-
gressing, facilitating the integration of the physical and
digital domains on an unprecedented scale, with far-
reaching impact.
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processes large volumes of data using complex algo-
rithms to make decisions. Data Science (DS), which in-
tersects with Al, ML, and DL, combines statistics, pro-
gramming, and domain expertise to extract meaningful
insight and knowledge from both structured and unstruc-
tured data.

In a producing hydrocarbon reservoir, vast amounts
of real-time data are generated from various sources
such as sensors, gauges, and meters. This data is charac-
terized by its volume, velocity, variety, veracity, and
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Table 1. Applications of AI/ML in Reservoir Simulation Available in Literature

Application ML Methods References

. . . Mohaghegh et al., 1999; Liu et al., 2021;
Hydraulic fracture design ANN, Deep learning Jia et al., 2024
Uncertainty analysis ANN Mohaghegh, 2011

Waterflooding design

ANN, Multi objective optimizations

Farahi et al., 2021; Zhong et al., 2020

Phase stability calculations ANN, SVM

Li et al., 2019; Zhang et al., 2020

Shale gas simulations ANN, XGBoost, CatBoost

Kalantari-Dahaghi and Mohaghegh, 2011;
Wang et al., 2023

History Matching ANN, GAN

Jo et al., 2021; Ramgulam et al., 2007;
Srinivasan et al., 2021

Oil production prediction NN

Muradkhanli, 2018; Zhang et al., 2022;
Li et al., 2022

ANN (Artificial Neural Network), NN (Neural Network), GAN (Generative Adversarial Network), SVM (Support Vector Ma-
chine), XGBoost (Extreme Gradient Boosting), CatBoost (Categorical Boosting).

value — attributes that classify it as ‘big data.” Such big
data plays a critical role in subsurface characterization,
reservoir performance analysis, and optimization.

In the context of reservoir management, Al facilitates
critical decision-making and the characterization of
multi-phase fluid flow within petroleum reservoirs.
Some of these applications, as reported in the literature,
are summarized in Table 1. While a strong foundation in
mathematics is essential, particularly in areas related to
reservoir simulation, domain expertise is less critical
when using Al compared to traditional reservoir simula-
tion methods. Building on the foundation of a single-
layer perceptron, or a machine capable of independent
thinking, we have now reached a stage where AI/ML ap-
proaches driven by pattern recognition and creativity,
including those in the petroleum industry, have become
indispensable. At the same time, the practice of scientif-
ic-based reservoir simulation remains crucial for effec-
tive reservoir characterization. Thus, the current article
attempts to discuss these two distinct approaches, sci-
ence-based and Al-based reservoir simulation, individu-
ally and proposes leveraging their combined effects to
successfully characterize multi-phase fluid flow in pe-
troleum reservoirs with minimal uncertainty.

In the petroleum industry, three main types of models
are commonly used: physical models, empirical models,
and mathematical models (Noshi and Schubert, 2018).
Physical models involve scaled-down versions of actual
field-scale reservoirs (Pavan et al., 2024; Reddya and
Kumarb, 2014). However, the extent to which the labo-
ratory setup accurately mimics real field conditions is
often questionable. This approach is not only costly and
time-consuming but also presents significant challenges
in upscaling, as the fundamental physics and the reser-
voir geometry at the laboratory scale differ substantially
from those in field conditions. Empirical models, on the
other hand, are based on insight derived from experi-
mental observations, such as Darcy’s law. While useful,
these models are prone to human error or measurement

inaccuracies, which can affect their reliability. Further-
more, they cannot be generalized, as they are not directly
deduced from fundamental physical principles. Mathe-
matical models address some of these limitations by de-
riving non-linearly coupled partial differential equations
(PDEs) from classical physical principles (Ansari and
Govindarajan, 2022, 2024; Kandala and Govindara-
jan, 2023). However, this approach typically involves
numerous assumptions and simplifications to manage
the mathematical complexity, which may compromise
the model’s fidelity. Despite these limitations, reservoir
simulation continues to play a critical role in petroleum
reservoir management. Al is now transforming the in-
dustry by addressing many challenges associated with
these traditional models, including reservoir simulation.
With its ability to analyse and derive insight from vast
datasets, capturing complex relationships between rock,
fluid, and rock-fluid properties it is increasingly being
recognized as a powerful tool. It enhances decision-
making, enables deeper understanding, and provides
timely insight required by field reservoir engineers,
thereby complementing and potentially surpassing tradi-
tional modelling approaches.

With the petroleum industry rapidly transitioning to
oil-field digitization through the application of data-
driven modelling, the role of Al has become critical
(Solomatine and Ostfeld, 2008). The key question is no
longer whether to adopt AL, but how to maximize its po-
tential within the petroleum industry to achieve continu-
ous improvements in operational performance (Al-
Rbeawi, 2023; Kronberger et al., 2020). In this con-
text, this article proposes coupling reservoir simulation
with Al to harness the strengths of both approaches, en-
suring maximum benefits with minimal uncertainty.
This methodology assigns equal weight to reservoir
simulation and Al, leveraging their complementary ca-
pabilities. Moreover, the integration of AI/ML within the
framework of the big data revolution is expected to sig-
nificantly reduce reservoir operation costs without com-
promising safety standards.
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This work will significantly benefit the new genera-
tion of petroleum engineers pursuing careers in reservoir
engineering and simulation, particularly at the intersec-
tion of Al and ML. It provides valuable insight into the
critical aspects that must be considered on the reservoir
side before embarking on model development and apply
ML models. This includes understanding the intricacies
of reservoir properties, data acquisition, and preprocess-
ing, all of which are essential for building accurate and
reliable models. Moreover, thought-provoking questions
have been put forward for the readers, which can inspire
further research in this field.

2. Reservoir Simulation

The fundamental aspect of reservoir simulation es-
sentially involves four basic stages (see Figure 1) a)
conceptual modelling, b) mathematical modelling, c)
numerical modelling and d) simulation using packages,
through which multi-dimensional, multi-phase com-
pressible fluid flow in a petroleum reservoir is character-
ized. However, even after meticulously following these
four stages, the simulation can only partially reflect the
reality of the actual reservoir. The degree to which the
simulation replicates the real field conditions whether it
approaches 95% accuracy or not depends significantly
on an individual’s in-depth knowledge of reservoir geol-
ogy, petro-physics, fluid dynamics, thermodynamics,
geo-mechanics, differential calculus, along with a strong
understanding of the fundamental drainage principles of
a hydrocarbon reservoir below and above the bubble
point pressure.

Conceptual . )
[ Modelling } ‘ ’ [ Simulation ‘

Figure 1. Key steps in reservoir simulation

Numerical

Mathematical
Modelling Modelling

2.1. Conceptual Modelling

The first stage of reservoir simulation involves the
formulation of a conceptual model, as illustrated in Fig-
ure 2. Unfortunately, this crucial aspect is often under-
valued due to the significant conceptual understanding it
demands about a reservoir. This stage involves visualis-
ing the actual, complex three-dimensional petroleum
reservoir within a conceptual framework, highlighting
intricate details such as delineation of reservoir bounda-
ries, conformities, and heterogeneities; well patterns and
the locations of injection and production wells; the fea-
sibility of pseudo-steady-state and transient fluid flow;
phase change aspects; the restructuring of the three-di-
mensional solid grain network; variations in Reynolds

number as a function of distance from injection or pro-
duction wells; and the maintenance of laminar flow
streamlines, including identifying the location and time
where inertial effects, if any, may arise. Additionally, the
transport of oil, water, and gas through complex pore
networks, the interplay of capillary, viscous, and gravity
forces, and their collective influence on fluid flow and
oil-water contacts within this three-dimensional domain
need to be considered. All these aspects must be concep-
tually (virtually) brought to life for further analysis.

Once this conceptualisation is achieved, the next step
is to identify and list the (a) physical processes, (b)
chemical processes (Devarapu et al., 2023; Dinesh et
al., 2024; Govindarajan et al., 2022), and (c) biological
processes (Chakraborty et al., 2020) individually as-
sociated with the reservoir. Following this, the feasibili-
ty of coupled processes — (a) between physical and
chemical processes, (b) between chemical and biologi-
cal processes, and (c) between biological and physical
processes must be assessed. From these lists, the domi-
nant and sensitive individual processes, as well as their
associated coupled processes, must be identified and
documented. This detailed understanding forms the out-
put of the conceptual modelling stage.

Cap Rock

Hydrocarbon
Generation

Source Rock

Figure 2. Typical petroleum reservoir schematic illustrating
the deduction of a 2D conceptual model, showcasing the
no-flow boundaries, wells, and flow dynamics.

2.2. Mathematical Modelling

The second step, mathematical modelling requires a
strong understanding of mathematics, especially differ-
ential calculus. In this stage, the results from conceptual
modelling must be translated into mathematical equa-
tions. A solid mathematical foundation is necessary to
proceed, as it’s important to know when to use linear or
non-linear algebraic equations, ordinary differential
equations (ODEs), or partial differential equations
(PDEs). Basic knowledge of elliptic, parabolic, and hy-
perbolic PDEs is essential (as shown in Table 1). For
instance, elliptic PDEs are not relevant for transient-
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Table 2. Overview of PDE properties, highlighting the nature of solutions, time dependence, and equilibrium behaviour.

Property Elliptic PDE Parabolic PDE Hyperbolic PDE
Form au +bu tcu tdu teu tfu=gxy |u=au +bu +cutfxy) u =au +bu tcu+fix1)
e D s | Uire lndepsnd E.Volv.es over time in single Evolves over time like waves
direction in both directions

Nature . Smooth and bounded Gradual varies with time Pr.opaga.tes as waves
of Solutions with finite speed

- Unstable to perturbations . . Sensitive to initial conditions
HELIILE (no growth of solutions) Dissipates over time (can lead to shock waves)
Propagatlolf kel (T e dlmiin) Parabohg diffusion-like Local (ﬁnltf: speed,' well-
of Information propagation defined regions of influence)
Equlllprlum Steady-state Diffusion to equilibrium Oscillatory or wave-like
Behaviour
Examples Steady-state flow Transient pressure diffusion | Seismic wave propagation

state fluid flow problems. In contrast, parabolic and hy-
perbolic PDEs are important in transient reservoir phys-
ics. A system where pressure changes over time and
eventually reaches a steady state can be modelled with a
parabolic diffusivity equation (Ansari and Govindara-
jan, 2023; Devarapu et al., 2023; Pavan et al., 2023;
Pavan and Govindarajan, 2023; Sivasankar and
Suresh Kumar, 2018). However, if the system shows
waves or heterogeneities, hyperbolic PDEs may also be
needed. Once the conceptual model is converted into a
set of coupled PDEs, it is crucial to determine the correct
initial and boundary conditions for the equations. The
solution should be well-posed, meaning numerical solu-
tions should be unique and stable when solving them
computationally.

2.3. Numerical Modelling

Numerical modelling involves solving mathematical
models that are comprised of PDEs or ODEs, using com-
puter algorithms when exact solutions are difficult to ob-
tain. This requires a good understanding of various numer-
ical methods, especially for non-linear and coupled PDEs.

For example, if the model is a simple parabolic diffu-
sivity equation, finding a numerical solution is easier. In
such cases, errors from initial or boundary conditions usu-
ally disappear over time as the system reaches a steady
state. However, for models with hyperbolic equations,
like wave equations, finding a stable solution is harder.
This is because hyperbolic PDEs amplify any errors at the
start, leading to significant convergence problems.

In petroleum reservoir modelling, we often deal with
both parabolic and hyperbolic PDEs. For instance, when
modelling fluid flow in a reservoir, we use mass and mo-
mentum conservation equations, which result in a mix of
parabolic PDEs and additional hyperbolic terms. These
hyperbolic terms are sometimes ignored, assuming a
simple, homogeneous reservoir, which is rarely the case
in reality.

To solve the mathematical models, it’s important to
understand: (a) the number of equations, (b) dependent

and independent variables, (c) constants and variable co-
efficients, (d) knowns and (e) unknowns. This under-
standing is crucial when linearizing non-linear PDEs for
numerical solutions. Linear systems can be solved using
direct methods (giving exact solutions) or iterative meth-
ods (giving approximate solutions). Direct methods
compute exact answers in a finite number of steps, while
iterative methods start with an initial guess and refine it
over time. Examples of iterative methods include Jaco-
bi’s, Gauss-Seidel, and Relaxation methods, which con-
verge to the solution after a few iterations, as shown in
Figure 3 (Srinivasa Reddy and Suresh Kumar, 2015).
Having figured out an appropriate and efficient numeri-
cal solution technique, a clear flow chart indicating the
details of input variables, initial unknowns, initial guess-
es, and the equation to be solved is prepared. If conver-
gence is achieved, it means it will go to the next step;
otherwise, it will go back to the same old step until con-
vergence is achieved. Common numerical methods in-
clude finite difference (FDM)), finite element (FEM), and
finite volume (FVM) techniques. The FDM approxi-
mates solutions using Taylor’s series but cannot capture
reservoir heterogeneities between nodes. Larger cell
widths can miss crucial details, making it less effective
for complex reservoirs. The FEM improves this by intro-
ducing elements between nodes, giving better control
over variable variations. However, FEM struggles with
fluid mass conservation, making it less ideal for petro-
leum reservoir simulations. The FVM is based on fluid
mass conservation and better suited for handling steep
gradients and shocks, like flow in fractured reservoirs or
shale gas systems (Kudapa et al., 2017).

To ensure accurate results, the numerical model must
achieve both numerical convergence and mathematical
convergence. Programming, often in Fortran or C or Py-
thon, begins with simple PDEs and known initial and
boundary conditions to verify the code before tackling
real complex equations. The results are validated against
existing solutions, experimental data, and field data to en-
sure reliability. In practice, many skip the foundational
steps of conceptual and mathematical modelling, directly
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ime < Total simulation tim¢

Initialize Variables

Initialise, compute and solve
Jacobian Matrix

]

Update Primary variables

Call
Initial conditions
&

Convergence criterion

Next Iteration

Compute Ax, Ay, Az and At
based on convergence

Time = Time + Time step

Iterations reached to
maximum

Guess the values of primary
variables at the new time

Calculate new time step

Figure 3. Algorithm describing an iterative approach
for solving a system of non-linear PDE

using pre-existing equations from literature with minor
modifications. This approach often neglects reservoir
physics and mass conservation, leading to poor charac-
terization of multi-phase fluid flow in heterogeneous res-
ervoirs. A reservoir simulation engineer must possess a
strong foundation in reservoir physics, computational
fluid dynamics, and geology to interpret numerical results
confidently and make accurate decisions in the field.

2.4. Reservoir Simulation using Packages

The concept of reservoir fluid flow characterization
using existing petroleum software packages remains
highly useful for field engineers in the petroleum indus-
try as they may not be able to spend time on the funda-
mental stages of modelling discussed in previous sec-
tions. Thus, in this approach, most of the energy is spent
only on gathering the required data from various sourc-
es. In this approach, even the data gathering remains not
justified completely because of some of the following
reasons: (a) the data towards rock property, fluid prop-
erty, and rock-fluid interaction property do not generally
tend to be uniform in nature with reference to the amount
of data gathered; (b) most of the rock property, fluid
property and rock-fluid interaction property data pertain
to a core-scale (done at lab; or from PVT cell data),
while, only very few data pertain to a field-scale; (c)
some of the fluid property and rock-fluid interaction
property data pertain to a much smaller scale (like con-
tact angle and interfacial curvature data) than from the
required Representative Elementary Volume (REV); (d)
incorporating data at different scales with extreme varia-
tions on the same input platform, such as interfacial ten-
sion data at the sub-pore scale alongside permeability
data at the large field scale, thereby deviating from the
continuum hypothesis-based Darcian approach. (Ven-
kata Pavan et al., 2024); (e) feeding more data pertain-

ing to reservoir statics rather than feeding the required
reservoir dynamics data; (f) securing laboratory-scale
capillary pressure data with ease, while the concept of
equilibrium capillary pressure may take a very long time
at the field scale; (g) obtaining relative permeability data
at the laboratory scale based solely on water saturation
may not reflect real field conditions, where hysteresis
plays a significant role, and fluid flow is often character-
ized by partial drainage and partial imbibition. Thus,
data gathering alone is insufficient; a thorough under-
standing of data scales, uniformity, and the number of
data points for each rock, fluid, and rock-fluid interac-
tion property is crucial. Many engineers may lack a
strong foundation in reservoir physics (conceptual mod-
el), applied reservoir mathematics (mathematical mod-
el), and numerical solution techniques (numerical mod-
el) used in petroleum software. Without a clear idea of
initial and boundary conditions and their stability crite-
ria, simply inputting cell width and time step may not
produce meaningful results, leading to misinterpreta-
tion. Therefore, relying solely on input data without for-
mulating conceptual, mathematical, and numerical mod-
els is unsuitable for academic purposes. However, in-
dustry professionals, having undergone these modelling
stages, can interpret results effectively while considering
limitations. Unlike fresh graduates, they have the exper-
tise to critically analyse simulations, ensuring informed
decision-making. This approach, in most cases, lacks a
strong foundation in fundamental reservoir sciences.

3. Al in Petroleum Industry

Al is advancing towards mimicking human decision-
making processes. ML, a subset of Al, enables comput-
ers to respond beyond their programmed behaviour by
utilizing external data. It primarily helps in the extrac-
tion of actionable insight from big data. ML can be cat-
egorized into distinct types, as illustrated in Figure 4.
The reliability and generalization of a model largely de-
pend on the quantity and diversity of data used during its
development. Various statistical and graphical approach-
es are employed to analyse the performance of predic-
tive models in the petroleum industry. For example, in
reservoir simulation, data from multiple sources are in-
tegrated without extensive preprocessing. In contrast,
ML-based approaches emphasize data preprocessing,
refining datasets before applying graphical and statisti-
cal analyses. This refinement process involves eliminat-
ing unreliable data points, such as outliers or incorrect
entries, to enhance the accuracy and reliability of predic-
tive tools. Error analysis is a critical component in this
approach, as it evaluates the performance and accuracy
of predictive models. The core of error analysis involves
quantifying deviations between predicted and actual
data points using mathematical formulations. In Al ap-
plications, unlike in reservoir simulations, data preproc-
essing is pivotal, with several essential steps undertaken
before using the data for modelling purposes.

Rudarsko-geolosko-nafini zbornik 2025, 40 (5), pp- 31-42, https://doi.org/10.17794/rgn.2025.5.3



K. Viswakanth, S.K. Govindarajan, N.V.P. Tummuri et al.

36

Machine
Learning

I T
Unsupervised Reinforcement|

|
Supervised Deep-
learning learning -learning learning
I
|Regression Classification| Clustering | Association —I Q-learning | _Multi-layer-
perceptron
Linear -Loglst'lc K-means Maykov-
regression Tegression [ decision- Recurrent-
process H neural-
e = network
Decision- Support Hierarchical-
fee M vector- | clustering Deep- -
Machine . Ll dversarial- Co[nvolutllo
Boosting — networks | [HA-Bou
methods | Decision | Gaussian- Hetwor
free mixture-model
Ensemble
Bayes clustering

Figure 4. Classification of Machine Learning Techniques

Data preprocessing, as shown in Figure 5, primarily
involves the following steps: (a) ‘Data cleaning’, which
comprises eliminating inconsistencies, smoothing noisy
data, and imputation of missing data points; (b) ‘Data in-
tegration’, where diverse data representations are com-
bined to deduce a unique and consistent representation;
(c) ‘Data transformation’, which includes normalisation,
generalisation, and aggregation of data; (d) ‘Data reduc-
tion’, involving the reduction of data representation with-
in a database; (e) ‘Data discretisation’, where data points
within the same interval are averaged; and (f) ‘Data sta-
tistics’, covering metrics such as Skewness (indicating
the asymmetry of the probability distribution of a random
variable about its mean) and Kurtosis (indicating the de-
gree of tailed-ness in a probability distribution).

Once preprocessing is complete, data processing be-
gins, comprising (i) ‘Data training’, where approximate-
ly three-fourths of the dataset is used to train the model,
and (i1) ‘Data validation and testing’, aimed at evaluat-
ing the model’s ability to predict new data points. Post-
processing of data involves evaluating the model using
either ‘statistical error analysis’ — which assesses perfor-
mance through metrics such as average percent relative
error, average absolute percent relative error, root mean
square error, standard deviation, or the coefficient of de-
termination — or ‘graphical error analysis’, which visual-
ises performance through tools like error distribution
curves or cross plots. The applicability domain of the
model is then finalised by identifying outliers within the
dataset.

Finally, ‘sensitivity analysis’ is conducted to deter-
mine how uncertainties in the model’s inputs influence
the uncertainties in its outputs. This involves performing
relevancy factor analysis before the model is deemed
ready for application in the petroleum industry, where
intelligent models are increasingly employed.

The development of intelligent models began with the
introduction of artificial neural networks (ANNs), in-
spired by biological neurons and the human brain. Key
ANN architectures come in different types based on
their structure and purpose. Feedforward neural net-

works (FNN) are the basic, where data transfers in uni
direction from input to output. Convolutional neural net-
works (CNN) are used for image and spatial data pro-
cessing, recognizing patterns through filter layers. Re-
current neural networks (RNN) are for sequential data,
where past information influences the current output,
making them useful in forecasting and language pro-
cessing. Long short-term memory (LSTM) networks, a
type of RNN, help retain information for longer periods.
Generative adversarial networks (GAN) consist of two
networks, one for data generation and the other for eval-
uation, commonly used in image creation. Radial basis
function (RBF) networks use mathematical functions to
improve classification and pattern recognition. Trans-
former networks, used in modern language models, pro-
cess information efficiently by focusing on critical parts
of the input. Building on these, fuzzy logic systems were
introduced to enhance higher-level reasoning and infer-
ence, leading to the emergence of adaptive neuro-fuzzy
inference systems (ANFIS), which integrate ANN capa-
bilities with fuzzy logic principles.

In reservoir simulation, data-driven neural networks
apply these intelligent modelling techniques to learn
from historical reservoir and production data for predict-
ing reservoir behaviour. However, their accuracy de-
pends on data availability, and limited datasets can lead
to unreliable predictions. To overcome this limitation,
physics-informed neural networks (PINNs) incorporate
fundamental physical laws, such as conservation of mass
and Darcy’s law, ensuring that predictions align with
real reservoir flow behaviour even in data-scarce condi-
tions. This integration of data-driven and physics-in-
formed approaches enhances the reliability and applica-
bility of intelligent models in reservoir analysis and de-
cision-making (de la Mata et al., 2023).

The concept of decision trees, particularly in the forms
of random forests and extra trees (extremely randomized
trees), has become a cornerstone of intelligent models due
to their simplicity, interpretability, graphical representa-
tion, and low computational cost. More recently, genetic
programming, an evolutionary algorithm exploring both
program and solution spaces, and gene expression pro-
gramming, which seeks optimal expression models
through chromosome-based encoding and solution report-
ing, have gained traction. These methods have surpassed
the group method of data handling (GMDH) in various
applications (Hemmati-Sarapardeh et al., 2020).

Towards the development of training and optimiza-
tion algorithms, numerous techniques have been intro-
duced in recent years. These span a broad spectrum of
optimization approaches, ranging from nature-inspired
heuristics to gradient-based deterministic methods, and
offer solutions for diverse problem domains. These in-
clude: (a) Genetic Algorithm;(b) Differential Evolution;
(c) Particle Swarm Optimization; (d) Ant Colony Opti-
mization; (e) Artificial Bee Colony; (f) Firefly Algo-
rithm; (g) Imperialist Competitive Algorithm; (h) Simu-

Rudarsko-geoloSko-naftni zbornik 2025, 40 (5), pp. 31-42, https://doi.org/10.17794/rgn.2025.5.3



37 Application of Artificial Intelligence in Reservoir Simulation for Characterizing Multi-Phase Fluid Flow...

Table 3. Advantages and disadvantages of application of various ML algorithms in reservoir simulation (Zhou et al., 2024)

Algorithm Advantages

Disadvantages

Linear Regression

Interpretable and suitable for variable data.

Cannot model nonlinear relationships.

Fuzzy Logic

Handles uncertainty and reduces noise.

Requires domain expertise and algorithm
knowledge.

Decision Trees

Easy to interpret using root-to-leaf rules.

Prone to overfitting; pruning is challenging.

Random Forest

Accurate; handles high-dimensional, noisy data.

Limited effectiveness in low-dimensional
scenarios.

Efficient, handles missing data, and controls

Poor fit for petroleum scenarios; prone to

effectively.

(G overfitting well. overfitting.

AdaBoost Low error, simple coding, no tuning. Ineffective in scenarios with many outliers.

S Vesion M Accqrate; robust to noise and outliers; handles | Kernel selection is challenging for specific
nonlinear data. problems.

Evolutionary Algorithms Few parameters; minimal background Easﬂhy falls into local optima;
knowledge needed. requires scenario-specific objectives.

ANN Handles complex relationships and noisy data Difficult to design; requires complex training
effectively. and many parameters.

RNN Processes sequential data with memory Struggles with historical data; prone to gradient
capabilities. issues.

LSTM and variants Manages long dependencies and gradient issues | Long training, parameter-heavy,

and computationally intensive.

lated Annealing; (i) Coupled Simulated Annealing; (j)
Gravitational Search Algorithm; (k) Cuckoo Optimiza-
tion Algorithm; (I) Gray Wolf Optimization; (m) Whale
Optimization Algorithm; (n) Levenberg-Marquardt Al-
gorithm; (o) Bayesian Regularization Algorithm; (p)
Scaled Conjugate Gradient Algorithm; and (q) Resilient
Backpropagation Algorithm.

Al has been extensively used in the upstream industry
for various applications, including well testing, produc-
tion prediction, history matching (Costa et al., 2014),
hydrocarbon property estimation, oil field development
(Sircar et al., 2021; Ren et al., 2024), and fracture pa-
rameter predictions (Ahmed et al., 2019; Nande, 2018).
While Al-driven intelligent models have brought signifi-
cant improvements, their effectiveness needs to be care-
fully studied. A key challenge lies in selecting appropri-
ate algorithms for reservoir fluid flow analysis, particu-
larly in assessing reservoir rock, fluid, and rock-fluid
interaction properties to determine the fraction of en-
hanced oil recovery. Additionally, well-test analysis and
formation damage analysis still require more advanced
specialized algorithms. It is crucial to evaluate how ac-
curately Al can deduce rock parameters, fluid parame-
ters, and rock-fluid interaction parameters, ensuring that
these deductions align with real field conditions. Even if
Al can accurately predict all reservoir properties using
advanced algorithms, we still need to check how close
these predictions are to actual field scenarios. A key
question is the role of detailed mathematical formula-
tions in fluid flow analysis of petroleum reservoirs and
how much Al-based models — using pattern recognition,
system identification, and cognitive processes — have
been able to replicate real-world fluid flow behaviour.

Another important area is understanding how Al per-
forms cross-validation during training and selects the
most suitable reservoir model. The process of dividing
datasets into training and validation sets, choosing data
for learning versus validation, and deciding when to stop
training needs further exploration. It is important to con-
sider whether achieving low errors in training and vali-
dation sets is sufficient to stop learning or if additional
“blind” data is necessary for better evaluation. Al plays
a crucial role in addressing disparities in data during the
training phase of model development. These intelligent
models learn by recognizing hidden patterns between in-
put reservoir properties and output responses, using op-
timization algorithms to improve performance. While Al
is highly effective in handling large datasets, identifying
patterns, and detecting trends, a key question remains:
can Al fully capture all aspects of reservoir heterogene-
ity? Another critical consideration is the extent to which
Al reduces uncertainty in reservoir performance. Ulti-
mately, the reliability of an Al model depends signifi-
cantly on the quality and quantity of reservoir data used.
For instance, insufficient permeability data can chal-
lenge the model’s ability to make accurate predictions.
Moreover, in cases where data is limited, dividing the
dataset into training, validation, and test subsets may not
be feasible, further impacting the robustness and relia-
bility of the intelligent model. These limitations high-
light the need for quality data and careful handling dur-
ing model development.

In essence, introducing Al has essentially translated the
reservoir scientific basis into an art form as it essentially
hangs around pattern recognition. This particular ap-
proach by any user, in the absence of acquiring the actual
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reservoir drainage physical principles, while mostly play-
ing with the data set alone, may not help the engineer in
the long run, and this approach survives with art as a basis
while science seems to be missing completely.

4. Coupled Effect of Al and Reservoir
Simulation

As far as the reservoir engineering discipline is con-
cerned, the concept of AI/ML remains widely used in
reservoir characterization, in particular, reservoir pres-
sure, temperature and volume estimations, including
bubble point pressure, formation volume factor, isother-
mal compressibility and brine salinity. In addition, ML
has also been used in a compositional oil simulator to-
wards phase-equilibrium estimations that include phase-
stability tests and phase-splitting calculations (Mirzaei
and Das, 2007). Reservoir rock properties, including
porosity and permeability, have also been estimated us-
ing fuzzy logic and SVM (Koray et al., 2024; Lim,
2005). An attempt has already been made to forecast the
time-lapse saturation profiles at well locations using in-
jection/production data (Balza and Li, 2020). In fact,
extreme learning machines (ELM) have helped to fore-
cast multiple reservoir parameters, namely lithofacies,
shale content, saturation and reservoir porosity (Lawal
et al., 2024; Liu et al., 2021). Further, ANNs not only
helped to forecast bottom hole pressure in vertical wells
but also have aided multi-dimensional interpolation of
relative permeability to overcome the influences of vari-
ous parameters during hybrid recovery processes.

Now, considering three possible approaches for im-
plementing ML algorithms: (a) developing surrogate
models for relatively homogeneous and isotropic reser-
voirs to reduce computational resources and costs; (b)
creating ML models for reservoirs where human exper-
tise is crucial, particularly for reservoir planning and
field management decisions during hydrocarbon produc-
tion; and (c) developing ML models for highly heteroge-
neous and anisotropic reservoirs, which are more com-
plex to understand and model. The first two options can
be managed with reservoir simulation, while the third
option may still require the help of AI/ML along with
reservoir simulation. However, it should be clearly not-
ed that in petroleum reservoir fluid flow analysis, the
reservoir environment is mostly heterogeneous, with
every decision becoming extremely expensive, while the
available data remains highly sporadic in nature. How-
ever, the petroleum production period being longer, ef-
ficient use of AI/ML could be expected to offer long-
term gains when it merges hands with the scientific-
based reservoir simulation. And, AI/ML algorithms are
expected to play a crucial role in addressing the chal-
lenges associated with (a) large amounts of biased data
(not all the rock, fluid, rock-fluid data uniformly); (b)
various data associated with various scales; (c) a signifi-
cant amount of inconsistent and inaccurate data; and (d)

high rate of biased data influx (again, not, all the rock,
fluid, rock-fluid data influx uniformly) (Koroteev and
Tekic, 2021). On top of it, now, AI/ML would be able to
scrutinize, filter and select the daily produced data from
downhole as well as from surface sensors effectively as
against the conventional structured and unstructured
data used in the petroleum industry to keep track of pro-
duction, maintenance and safety. Of course, in the petro-
leum industry, securing accurate data either becomes
nearly impossible or extremely expensive and eventual-
ly, whether we will be able to provide a sufficient quan-
tity and quality data for training, verification and valida-
tion remains a crucial task. The other drawback associ-
ated with the AI/ML approach is the time delay
associated with the data processing because a significant
amount of data is associated with high uncertainty.

In general, conventional scientific engineering analy-
sis using reservoir simulators often faces challenges due
to the extensive data requirements for reservoir rock
properties, fluid properties, and rock-fluid interactions.
Introducing Al techniques can help identify and model
the complex non-linear relationships between these pa-
rameters, improving our understanding of their interac-
tions. However, the success of Al depends heavily on
collecting and filtering credible data from reservoir sites.
While Al techniques offer potential, relying solely on
them without incorporating reservoir simulation can
lead to inaccurate correlations, unrealistic clustering,
and biases due to missing data or unstable oil-water
fronts (Ertekin and Sun, 2019). This highlights the
need for a balanced approach. Advanced methods like
transfer learning can address this gap by starting with a
reservoir simulation model and refining it using AI/ML
with specific training data. Combining AI/ML with res-
ervoir simulation can reduce the computational chal-
lenges of solving complex coupled PDEs and provide
deeper insight into petroleum reservoirs. This hybrid ap-
proach offers a more reliable and efficient way to model
and analyze reservoirs.

It is now clearly known that reservoir simulation has
a very strong scientific basis, while Al has a very strong
art basis. If the petroleum industry makes an attempt to
couple these two approaches in the best possible way,
then the characterization of fluid flow through petroleum
reservoirs will end up with minimal uncertainty while
gaining the maximum benefit. The concept of reservoir
simulation remains well known in the petroleum indus-
try, while the application of Al in the petroleum industry
is not in full swing. The way various data needs to be
trained and the appropriate selection of algorithms meant
for the successful estimation of reservoir rock and fluid
parameters require a special skill. In essence, merging
science and art elevates multi-phase fluid flow analysis
to the next level. By integrating Al with reservoir simu-
lation, we preserve traditional reservoir simulation prac-
tices while embracing advancements in Al. This ap-
proach enables the petroleum industry to leverage the
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strengths of both methods, leading to more effective
characterization of multi-phase fluid flow in petroleum
Ieservoirs.

5. Conclusions

This article highlights the limitations of the current
approach to reservoir simulation, particularly the reli-
ance on petroleum software packages without a solid
understanding of reservoir physics and mathematical
principles. It also critiques the use of machine learning
and artificial intelligence in reservoir characterization,
viewing it more as an art than a rigorous science. Finally,
the study explores the integration of reservoir simulation
and Al, discussing its potential to transform the petrole-
um industry by enabling more advanced and accurate
fluid flow analysis.

The following conclusions have been deduced from
the present study.

1. The current approach to reservoir simulation
through numerical modelling often ignores the fun-
damental physics of reservoir behaviour and the
formulation of conceptual and mathematical mod-
els using applied reservoir mathematics. Instead,
the focus is mainly on developing advanced numer-
ical solution techniques, many of which do not fol-
low the basic principle of fluid mass conservation.

2. Using petroleum reservoir simulation software
without developing conceptual, mathematical, or
numerical models — and relying on input data that
is often not justified in terms of scale and uniform-
ity — is not suitable for academic purposes. This
method is more appropriate for industry profes-
sionals who have the expertise to understand dif-
ferent aspects of modelling. In an academic set-
ting, fresh graduates may lack the necessary

knowledge to correctly interpret simulation re-
sults. Industry experts, on the other hand, can care-
fully analyze results while considering the limita-
tions and challenges at each stage, leading to better
interpretations.

3. In Al applications, unlike traditional reservoir sim-
ulation, pre-processing of data is a very important
step where proper measures are taken before using
the data for processing. The introduction of Al has
made reservoir science more dependent on pattern
recognition, turning it into an art rather than pure
science. However, depending only on data manip-
ulation without understanding the actual physical
principles of reservoir drainage may not be a sus-
tainable approach in the long run, as it moves away
from the scientific foundation.

4. By combining “art-based AI” with “science-based
reservoir simulation,” we can continue the tradi-
tional practice of reservoir simulation while adopt-
ing Al advancements. This hybrid approach allows
the petroleum industry to benefit from the strengths
of both methods, leading to better characterization
of multiphase fluid flow in reservoirs. It prevents a
complete shift from knowledge-based models to
only data-driven AI/ML techniques, ensuring that
Al supports rather than replaces traditional reser-
voir simulation.

5. Finally, this study highlights the importance of
fundamental physics in reservoir simulation and
its role in developing Al-based models. It also pro-
vides guidance for entry-level reservoir engineers
on how to approach reservoir simulation problems,
explaining the essential steps required for effec-
tively simulating subsurface processes. Addition-
ally, thought-provoking questions have been in-
cluded to encourage further research in this field.
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SAZETAK

Primjena umjetne inteligencije u simulaciji lezista za karakterizaciju protoka
visefaznoga fluida kroz naftna lezista

Umjetna inteligencija (AI) brzo napreduje i utje¢e na sva znanstvena podrudja, uklju¢ujudi i naftnu industriju, gdje ona
vise nije novost. Ovaj ¢lanak istrazuje razvoj umjetne inteligencija i njezinu integraciju s tradicionalnim pristupima si-
mulacije lezista. Prvi dio rada isti¢e sve manji naglasak na konceptualno i matematicko modeliranje u simulaciji lezista,
uz rastuci fokus na sofisticirane tehnike numerickoga rje$enja. Ovaj pristup ¢esto zanemaruje temeljnu fiziku i matema-
tiku leZista, §to dovodi do povr$ne karakterizacije visefaznoga protoka fluida u naftnim leZitima. U drugome dijelu rada
analizirano je ¢esto koriStenje softverskih paketa u naftnoj industriji, koji se u velikoj mjeri oslanjaju na ulazne podatke,
a da pritom ne uzimaju u obzir varijacije u skalama podataka. Ti alati tretiraju temeljno programiranje kao ,.crnu kutiju’,
Cesto zaobilazedi klju¢ne temeljne znanstvene discipline poput konceptualizacije lezista, primijenjene matematike i
numerickih tehnika, $to rezultira nepotpunom karakterizacijom lezista. U tre¢emu dijelu rada razmatrana je uloga stroj-
noga ucenja (ML) i umjetne inteligencije u primjenama na leZistima. Dok znanost o podatcima igra klju¢nu ulogu, ne-
dostatak integracije s temeljnim fizickim zakonitostima leZi$ta svodi analizu protoka fluida na ,umjetnost” bez znan-
stvene strogosti. U zadnjemu dijelu rada predloZen je hibridni pristup koji povezuje AI/ML s tradicionalnom simulaci-
jom lezista. Ova integracija premoscuje jaz izmedu znanstveno utemeljene simulacije lezista i analize protoka fluida
vodene umjetnom inteligencijom, omogucujuci naftnoj industriji da postigne novu paradigmu za analizu visefaznoga
protoka fluida. Kombinirajuéi temeljnu znanost s naprednim tehnikama umjetne inteligencije, ovaj pristup nudi sveo-
buhvatni okvir za preciznu karakterizaciju lezista i pobolj$anu proizvodnju ugljikovodika.
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umjetna inteligencija, strojno ucenje, simulacija leZi$ta, konceptualni model, matematic¢ki model, numeri¢ki model
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