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Abstract
Artificial intelligence (AI) has rapidly advanced and influenced all scientific fields, including the petroleum industry, 
where it is no longer a novel concept. This article explores the evolving role of AI and its integration with traditional 
reservoir simulation approaches. The first section highlights the diminishing emphasis on conceptual and mathematical 
modelling in reservoir simulation, with a growing focus on sophisticated numerical solution techniques. This shift often 
neglects fundamental reservoir physics and mathematics, leading to the superficial characterization of multi-phase 
fluid flow in petroleum reservoirs. The second section examines the prevalent use of petroleum software packages, which 
heavily rely on input data without accounting for variations in data scales. These tools treat underlying programming as 
a black box, often bypassing critical basic sciences, such as reservoir conceptualization, applied mathematics, and nu-
merical techniques, resulting in incomplete reservoir characterization. The third section discusses the role of machine 
learning (ML) and AI in reservoir applications. While data science plays a pivotal role, the lack of integration with fun-
damental reservoir physics reduces fluid flow analysis to an art devoid of scientific rigour. The final section proposes a 
hybrid approach that couples AI/ML with traditional reservoir simulation. This integration bridges the gap between 
science-based reservoir simulation and AI-driven fluid flow characterization, enabling the petroleum industry to achieve 
a new paradigm for multi-phase fluid flow analysis. By combining fundamental science with advanced AI techniques, 
this approach offers a comprehensive framework for accurate reservoir characterization and improved hydrocarbon pro-
duction.
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1. Introduction

Post-pandemic, the world is gradually returning to 
pre-pandemic normalcy in terms of hydrocarbon con-
sumption, despite ongoing geopolitical challenges. 
Studies project an average global GDP growth rate of 
3% until 2030, with emerging economies playing a cru-
cial role. As hydrocarbons continue to be a key driver of 
this growth, their exploration and utilisation must be op-
timised for maximum efficiency. In this evolving land-
scape, advanced technologies such as Artificial Intelli-
gence (AI) and Machine Learning (ML) are rapidly pro-
gressing, facilitating the integration of the physical and 
digital domains on an unprecedented scale, with far-
reaching impact.

The adoption of AI and ML in the upstream industry 
is steadily increasing, with numerous applications show-
casing their potential. The AI market in the upstream 
sector is expected to grow from $2.8 billion in 2023 to 
$5.1 billion by 2028. AI primarily focuses on creating 
machines that mimic human intelligence, encompassing 
a broad range of technologies. Within AI, ML represents 
a subset that builds models on pre-trained data, identify-
ing patterns to predict outcomes (Bhattacharya, 2021). 
Deep Learning (DL), a further specialized subset of ML, 
processes large volumes of data using complex algo-
rithms to make decisions. Data Science (DS), which in-
tersects with AI, ML, and DL, combines statistics, pro-
gramming, and domain expertise to extract meaningful 
insight and knowledge from both structured and unstruc-
tured data.

In a producing hydrocarbon reservoir, vast amounts 
of real-time data are generated from various sources 
such as sensors, gauges, and meters. This data is charac-
terized by its volume, velocity, variety, veracity, and 
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value – attributes that classify it as ‘big data.’ Such big 
data plays a critical role in subsurface characterization, 
reservoir performance analysis, and optimization.

In the context of reservoir management, AI facilitates 
critical decision-making and the characterization of 
multi-phase fluid flow within petroleum reservoirs. 
Some of these applications, as reported in the literature, 
are summarized in Table 1. While a strong foundation in 
mathematics is essential, particularly in areas related to 
reservoir simulation, domain expertise is less critical 
when using AI compared to traditional reservoir simula-
tion methods. Building on the foundation of a single-
layer perceptron, or a machine capable of independent 
thinking, we have now reached a stage where AI/ML ap-
proaches driven by pattern recognition and creativity, 
including those in the petroleum industry, have become 
indispensable. At the same time, the practice of scientif-
ic-based reservoir simulation remains crucial for effec-
tive reservoir characterization. Thus, the current article 
attempts to discuss these two distinct approaches, sci-
ence-based and AI-based reservoir simulation, individu-
ally and proposes leveraging their combined effects to 
successfully characterize multi-phase fluid flow in pe-
troleum reservoirs with minimal uncertainty.

In the petroleum industry, three main types of models 
are commonly used: physical models, empirical models, 
and mathematical models (Noshi and Schubert, 2018). 
Physical models involve scaled-down versions of actual 
field-scale reservoirs (Pavan et al., 2024; Reddya and 
Kumarb, 2014). However, the extent to which the labo-
ratory setup accurately mimics real field conditions is 
often questionable. This approach is not only costly and 
time-consuming but also presents significant challenges 
in upscaling, as the fundamental physics and the reser-
voir geometry at the laboratory scale differ substantially 
from those in field conditions. Empirical models, on the 
other hand, are based on insight derived from experi-
mental observations, such as Darcy’s law. While useful, 
these models are prone to human error or measurement 

inaccuracies, which can affect their reliability. Further-
more, they cannot be generalized, as they are not directly 
deduced from fundamental physical principles. Mathe-
matical models address some of these limitations by de-
riving non-linearly coupled partial differential equations 
(PDEs) from classical physical principles (Ansari and 
Govindarajan, 2022, 2024; Kandala and Govindara-
jan, 2023). However, this approach typically involves 
numerous assumptions and simplifications to manage 
the mathematical complexity, which may compromise 
the model’s fidelity. Despite these limitations, reservoir 
simulation continues to play a critical role in petroleum 
reservoir management. AI is now transforming the in-
dustry by addressing many challenges associated with 
these traditional models, including reservoir simulation. 
With its ability to analyse and derive insight from vast 
datasets, capturing complex relationships between rock, 
fluid, and rock-fluid properties it is increasingly being 
recognized as a powerful tool. It enhances decision-
making, enables deeper understanding, and provides 
timely insight required by field reservoir engineers, 
thereby complementing and potentially surpassing tradi-
tional modelling approaches.

With the petroleum industry rapidly transitioning to 
oil-field digitization through the application of data-
driven modelling, the role of AI has become critical 
(Solomatine and Ostfeld, 2008). The key question is no 
longer whether to adopt AI, but how to maximize its po-
tential within the petroleum industry to achieve continu-
ous improvements in operational performance (Al-
Rbeawi, 2023; Kronberger et al., 2020). In this con-
text, this article proposes coupling reservoir simulation 
with AI to harness the strengths of both approaches, en-
suring maximum benefits with minimal uncertainty. 
This methodology assigns equal weight to reservoir 
simulation and AI, leveraging their complementary ca-
pabilities. Moreover, the integration of AI/ML within the 
framework of the big data revolution is expected to sig-
nificantly reduce reservoir operation costs without com-
promising safety standards.

Table 1. Applications of AI/ML in Reservoir Simulation Available in Literature

Application ML Methods References

Hydraulic fracture design ANN, Deep learning Mohaghegh et al., 1999; Liu et al., 2021;  
Jia et al., 2024

Uncertainty analysis ANN Mohaghegh, 2011
Waterflooding design ANN, Multi objective optimizations Farahi et al., 2021; Zhong et al., 2020
Phase stability calculations ANN, SVM Li et al., 2019; Zhang et al., 2020

Shale gas simulations ANN, XGBoost, CatBoost Kalantari-Dahaghi and Mohaghegh, 2011;  
Wang et al., 2023 

History Matching ANN, GAN Jo et al., 2021; Ramgulam et al., 2007;  
Srinivasan et al., 2021 

Oil production prediction NN Muradkhanli, 2018; Zhang et al., 2022;
Li et al., 2022

ANN (Artificial Neural Network), NN (Neural Network), GAN (Generative Adversarial Network), SVM (Support Vector Ma-
chine), XGBoost (Extreme Gradient Boosting), CatBoost (Categorical Boosting).
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This work will significantly benefit the new genera-
tion of petroleum engineers pursuing careers in reservoir 
engineering and simulation, particularly at the intersec-
tion of AI and ML. It provides valuable insight into the 
critical aspects that must be considered on the reservoir 
side before embarking on model development and apply 
ML models. This includes understanding the intricacies 
of reservoir properties, data acquisition, and preprocess-
ing, all of which are essential for building accurate and 
reliable models. Moreover, thought-provoking questions 
have been put forward for the readers, which can inspire 
further research in this field.

2. Reservoir Simulation

The fundamental aspect of reservoir simulation es-
sentially involves four basic stages (see Figure 1) a) 
conceptual modelling, b) mathematical modelling, c) 
numerical modelling and d) simulation using packages, 
through which multi-dimensional, multi-phase com-
pressible fluid flow in a petroleum reservoir is character-
ized. However, even after meticulously following these 
four stages, the simulation can only partially reflect the 
reality of the actual reservoir. The degree to which the 
simulation replicates the real field conditions whether it 
approaches 95% accuracy or not depends significantly 
on an individual’s in-depth knowledge of reservoir geol-
ogy, petro-physics, fluid dynamics, thermodynamics, 
geo-mechanics, differential calculus, along with a strong 
understanding of the fundamental drainage principles of 
a hydrocarbon reservoir below and above the bubble 
point pressure.

number as a function of distance from injection or pro-
duction wells; and the maintenance of laminar flow 
streamlines, including identifying the location and time 
where inertial effects, if any, may arise. Additionally, the 
transport of oil, water, and gas through complex pore 
networks, the interplay of capillary, viscous, and gravity 
forces, and their collective influence on fluid flow and 
oil-water contacts within this three-dimensional domain 
need to be considered. All these aspects must be concep-
tually (virtually) brought to life for further analysis.

Once this conceptualisation is achieved, the next step 
is to identify and list the (a) physical processes, (b) 
chemical processes (Devarapu et al., 2023; Dinesh et 
al., 2024; Govindarajan et al., 2022), and (c) biological 
processes (Chakraborty et al., 2020) individually as-
sociated with the reservoir. Following this, the feasibili-
ty of coupled processes – (a) between physical and 
chemical processes, (b) between chemical and biologi-
cal processes, and (c) between biological and physical 
processes must be assessed. From these lists, the domi-
nant and sensitive individual processes, as well as their 
associated coupled processes, must be identified and 
documented. This detailed understanding forms the out-
put of the conceptual modelling stage.

Figure 1. Key steps in reservoir simulation Figure 2. Typical petroleum reservoir schematic illustrating 
the deduction of a 2D conceptual model, showcasing the 

no-flow boundaries, wells, and flow dynamics.
2.1. Conceptual Modelling

The first stage of reservoir simulation involves the 
formulation of a conceptual model, as illustrated in Fig-
ure 2. Unfortunately, this crucial aspect is often under-
valued due to the significant conceptual understanding it 
demands about a reservoir. This stage involves visualis-
ing the actual, complex three-dimensional petroleum 
reservoir within a conceptual framework, highlighting 
intricate details such as delineation of reservoir bounda-
ries, conformities, and heterogeneities; well patterns and 
the locations of injection and production wells; the fea-
sibility of pseudo-steady-state and transient fluid flow; 
phase change aspects; the restructuring of the three-di-
mensional solid grain network; variations in Reynolds 

2.2. Mathematical Modelling

The second step, mathematical modelling requires a 
strong understanding of mathematics, especially differ-
ential calculus. In this stage, the results from conceptual 
modelling must be translated into mathematical equa-
tions. A solid mathematical foundation is necessary to 
proceed, as it’s important to know when to use linear or 
non-linear algebraic equations, ordinary differential 
equations (ODEs), or partial differential equations 
(PDEs). Basic knowledge of elliptic, parabolic, and hy-
perbolic PDEs is essential (as shown in Table 1). For 
instance, elliptic PDEs are not relevant for transient-
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state fluid flow problems. In contrast, parabolic and hy-
perbolic PDEs are important in transient reservoir phys-
ics. A system where pressure changes over time and 
eventually reaches a steady state can be modelled with a 
parabolic diffusivity equation (Ansari and Govindara-
jan, 2023; Devarapu et al., 2023; Pavan et al., 2023; 
Pavan and Govindarajan, 2023; Sivasankar and 
Suresh Kumar, 2018). However, if the system shows 
waves or heterogeneities, hyperbolic PDEs may also be 
needed. Once the conceptual model is converted into a 
set of coupled PDEs, it is crucial to determine the correct 
initial and boundary conditions for the equations. The 
solution should be well-posed, meaning numerical solu-
tions should be unique and stable when solving them 
computationally.

2.3. Numerical Modelling

Numerical modelling involves solving mathematical 
models that are comprised of PDEs or ODEs, using com-
puter algorithms when exact solutions are difficult to ob-
tain. This requires a good understanding of various numer-
ical methods, especially for non-linear and coupled PDEs.

For example, if the model is a simple parabolic diffu-
sivity equation, finding a numerical solution is easier. In 
such cases, errors from initial or boundary conditions usu-
ally disappear over time as the system reaches a steady 
state. However, for models with hyperbolic equations, 
like wave equations, finding a stable solution is harder. 
This is because hyperbolic PDEs amplify any errors at the 
start, leading to significant convergence problems.

In petroleum reservoir modelling, we often deal with 
both parabolic and hyperbolic PDEs. For instance, when 
modelling fluid flow in a reservoir, we use mass and mo-
mentum conservation equations, which result in a mix of 
parabolic PDEs and additional hyperbolic terms. These 
hyperbolic terms are sometimes ignored, assuming a 
simple, homogeneous reservoir, which is rarely the case 
in reality.

To solve the mathematical models, it’s important to 
understand: (a) the number of equations, (b) dependent 

and independent variables, (c) constants and variable co-
efficients, (d) knowns and (e) unknowns. This under-
standing is crucial when linearizing non-linear PDEs for 
numerical solutions. Linear systems can be solved using 
direct methods (giving exact solutions) or iterative meth-
ods (giving approximate solutions). Direct methods 
compute exact answers in a finite number of steps, while 
iterative methods start with an initial guess and refine it 
over time. Examples of iterative methods include Jaco-
bi’s, Gauss-Seidel, and Relaxation methods, which con-
verge to the solution after a few iterations, as shown in 
Figure 3 (Srinivasa Reddy and Suresh Kumar, 2015). 
Having figured out an appropriate and efficient numeri-
cal solution technique, a clear flow chart indicating the 
details of input variables, initial unknowns, initial guess-
es, and the equation to be solved is prepared. If conver-
gence is achieved, it means it will go to the next step; 
otherwise, it will go back to the same old step until con-
vergence is achieved. Common numerical methods in-
clude finite difference (FDM), finite element (FEM), and 
finite volume (FVM) techniques. The FDM approxi-
mates solutions using Taylor’s series but cannot capture 
reservoir heterogeneities between nodes. Larger cell 
widths can miss crucial details, making it less effective 
for complex reservoirs. The FEM improves this by intro-
ducing elements between nodes, giving better control 
over variable variations. However, FEM struggles with 
fluid mass conservation, making it less ideal for petro-
leum reservoir simulations. The FVM is based on fluid 
mass conservation and better suited for handling steep 
gradients and shocks, like flow in fractured reservoirs or 
shale gas systems (Kudapa et al., 2017).

To ensure accurate results, the numerical model must 
achieve both numerical convergence and mathematical 
convergence. Programming, often in Fortran or C or Py-
thon, begins with simple PDEs and known initial and 
boundary conditions to verify the code before tackling 
real complex equations. The results are validated against 
existing solutions, experimental data, and field data to en-
sure reliability. In practice, many skip the foundational 
steps of conceptual and mathematical modelling, directly 

Table 2. Overview of PDE properties, highlighting the nature of solutions, time dependence, and equilibrium behaviour.

Property Elliptic PDE Parabolic PDE Hyperbolic PDE
Form auxx + buxy + cuyy + dux + euy + fu = g(x,y) ut = auxx + bux + cu + f(x,t) utt = auxx + bux +cu + f(x,t)

Time Dependence Time Independent Evolves over time in single 
direction

Evolves over time like waves  
in both directions

Nature  
of Solutions Smooth and bounded Gradual varies with time Propagates as waves  

with finite speed

Stability Unstable to perturbations  
(no growth of solutions) Dissipates over time Sensitive to initial conditions  

(can lead to shock waves)
Propagation  
of Information Global (affects entire domain) Parabolic diffusion-like 

propagation
Local (finite speed, well-
defined regions of influence)

Equilibrium 
Behaviour Steady-state Diffusion to equilibrium Oscillatory or wave-like

Examples Steady-state flow Transient pressure diffusion Seismic wave propagation
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using pre-existing equations from literature with minor 
modifications. This approach often neglects reservoir 
physics and mass conservation, leading to poor charac-
terization of multi-phase fluid flow in heterogeneous res-
ervoirs. A reservoir simulation engineer must possess a 
strong foundation in reservoir physics, computational 
fluid dynamics, and geology to interpret numerical results 
confidently and make accurate decisions in the field.

2.4. Reservoir Simulation using Packages

The concept of reservoir fluid flow characterization 
using existing petroleum software packages remains 
highly useful for field engineers in the petroleum indus-
try as they may not be able to spend time on the funda-
mental stages of modelling discussed in previous sec-
tions. Thus, in this approach, most of the energy is spent 
only on gathering the required data from various sourc-
es. In this approach, even the data gathering remains not 
justified completely because of some of the following 
reasons: (a) the data towards rock property, fluid prop-
erty, and rock-fluid interaction property do not generally 
tend to be uniform in nature with reference to the amount 
of data gathered; (b) most of the rock property, fluid 
property and rock-fluid interaction property data pertain 
to a core-scale (done at lab; or from PVT cell data), 
while, only very few data pertain to a field-scale; (c) 
some of the fluid property and rock-fluid interaction 
property data pertain to a much smaller scale (like con-
tact angle and interfacial curvature data) than from the 
required Representative Elementary Volume (REV); (d) 
incorporating data at different scales with extreme varia-
tions on the same input platform, such as interfacial ten-
sion data at the sub-pore scale alongside permeability 
data at the large field scale, thereby deviating from the 
continuum hypothesis-based Darcian approach. (Ven-
kata Pavan et al., 2024); (e) feeding more data pertain-

ing to reservoir statics rather than feeding the required 
reservoir dynamics data; (f) securing laboratory-scale 
capillary pressure data with ease, while the concept of 
equilibrium capillary pressure may take a very long time 
at the field scale; (g) obtaining relative permeability data 
at the laboratory scale based solely on water saturation 
may not reflect real field conditions, where hysteresis 
plays a significant role, and fluid flow is often character-
ized by partial drainage and partial imbibition. Thus, 
data gathering alone is insufficient; a thorough under-
standing of data scales, uniformity, and the number of 
data points for each rock, fluid, and rock-fluid interac-
tion property is crucial. Many engineers may lack a 
strong foundation in reservoir physics (conceptual mod-
el), applied reservoir mathematics (mathematical mod-
el), and numerical solution techniques (numerical mod-
el) used in petroleum software. Without a clear idea of 
initial and boundary conditions and their stability crite-
ria, simply inputting cell width and time step may not 
produce meaningful results, leading to misinterpreta-
tion. Therefore, relying solely on input data without for-
mulating conceptual, mathematical, and numerical mod-
els is unsuitable for academic purposes. However, in-
dustry professionals, having undergone these modelling 
stages, can interpret results effectively while considering 
limitations. Unlike fresh graduates, they have the exper-
tise to critically analyse simulations, ensuring informed 
decision-making. This approach, in most cases, lacks a 
strong foundation in fundamental reservoir sciences.

3. AI in Petroleum Industry

AI is advancing towards mimicking human decision-
making processes. ML, a subset of AI, enables comput-
ers to respond beyond their programmed behaviour by 
utilizing external data. It primarily helps in the extrac-
tion of actionable insight from big data. ML can be cat-
egorized into distinct types, as illustrated in Figure 4. 
The reliability and generalization of a model largely de-
pend on the quantity and diversity of data used during its 
development. Various statistical and graphical approach-
es are employed to analyse the performance of predic-
tive models in the petroleum industry. For example, in 
reservoir simulation, data from multiple sources are in-
tegrated without extensive preprocessing. In contrast, 
ML-based approaches emphasize data preprocessing, 
refining datasets before applying graphical and statisti-
cal analyses. This refinement process involves eliminat-
ing unreliable data points, such as outliers or incorrect 
entries, to enhance the accuracy and reliability of predic-
tive tools. Error analysis is a critical component in this 
approach, as it evaluates the performance and accuracy 
of predictive models. The core of error analysis involves 
quantifying deviations between predicted and actual 
data points using mathematical formulations. In AI ap-
plications, unlike in reservoir simulations, data preproc-
essing is pivotal, with several essential steps undertaken 
before using the data for modelling purposes.

Figure 3. Algorithm describing an iterative approach  
for solving a system of non-linear PDE
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Data preprocessing, as shown in Figure 5, primarily 
involves the following steps: (a) ‘Data cleaning’, which 
comprises eliminating inconsistencies, smoothing noisy 
data, and imputation of missing data points; (b) ‘Data in-
tegration’, where diverse data representations are com-
bined to deduce a unique and consistent representation; 
(c) ‘Data transformation’, which includes normalisation, 
generalisation, and aggregation of data; (d) ‘Data reduc-
tion’, involving the reduction of data representation with-
in a database; (e) ‘Data discretisation’, where data points 
within the same interval are averaged; and (f) ‘Data sta-
tistics’, covering metrics such as Skewness (indicating 
the asymmetry of the probability distribution of a random 
variable about its mean) and Kurtosis (indicating the de-
gree of tailed-ness in a probability distribution).

Once preprocessing is complete, data processing be-
gins, comprising (i) ‘Data training’, where approximate-
ly three-fourths of the dataset is used to train the model, 
and (ii) ‘Data validation and testing’, aimed at evaluat-
ing the model’s ability to predict new data points. Post-
processing of data involves evaluating the model using 
either ‘statistical error analysis’ – which assesses perfor-
mance through metrics such as average percent relative 
error, average absolute percent relative error, root mean 
square error, standard deviation, or the coefficient of de-
termination – or ‘graphical error analysis’, which visual-
ises performance through tools like error distribution 
curves or cross plots. The applicability domain of the 
model is then finalised by identifying outliers within the 
dataset.

Finally, ‘sensitivity analysis’ is conducted to deter-
mine how uncertainties in the model’s inputs influence 
the uncertainties in its outputs. This involves performing 
relevancy factor analysis before the model is deemed 
ready for application in the petroleum industry, where 
intelligent models are increasingly employed.

The development of intelligent models began with the 
introduction of artificial neural networks (ANNs), in-
spired by biological neurons and the human brain. Key 
ANN architectures come in different types based on 
their structure and purpose. Feedforward neural net-

works (FNN) are the basic, where data transfers in uni 
direction from input to output. Convolutional neural net-
works (CNN) are used for image and spatial data pro-
cessing, recognizing patterns through filter layers. Re-
current neural networks (RNN) are for sequential data, 
where past information influences the current output, 
making them useful in forecasting and language pro-
cessing. Long short-term memory (LSTM) networks, a 
type of RNN, help retain information for longer periods. 
Generative adversarial networks (GAN) consist of two 
networks, one for data generation and the other for eval-
uation, commonly used in image creation. Radial basis 
function (RBF) networks use mathematical functions to 
improve classification and pattern recognition. Trans-
former networks, used in modern language models, pro-
cess information efficiently by focusing on critical parts 
of the input. Building on these, fuzzy logic systems were 
introduced to enhance higher-level reasoning and infer-
ence, leading to the emergence of adaptive neuro-fuzzy 
inference systems (ANFIS), which integrate ANN capa-
bilities with fuzzy logic principles.

In reservoir simulation, data-driven neural networks 
apply these intelligent modelling techniques to learn 
from historical reservoir and production data for predict-
ing reservoir behaviour. However, their accuracy de-
pends on data availability, and limited datasets can lead 
to unreliable predictions. To overcome this limitation, 
physics-informed neural networks (PINNs) incorporate 
fundamental physical laws, such as conservation of mass 
and Darcy’s law, ensuring that predictions align with 
real reservoir flow behaviour even in data-scarce condi-
tions. This integration of data-driven and physics-in-
formed approaches enhances the reliability and applica-
bility of intelligent models in reservoir analysis and de-
cision-making (de la Mata et al., 2023).

The concept of decision trees, particularly in the forms 
of random forests and extra trees (extremely randomized 
trees), has become a cornerstone of intelligent models due 
to their simplicity, interpretability, graphical representa-
tion, and low computational cost. More recently, genetic 
programming, an evolutionary algorithm exploring both 
program and solution spaces, and gene expression pro-
gramming, which seeks optimal expression models 
through chromosome-based encoding and solution report-
ing, have gained traction. These methods have surpassed 
the group method of data handling (GMDH) in various 
applications (Hemmati-Sarapardeh et al., 2020).

Towards the development of training and optimiza-
tion algorithms, numerous techniques have been intro-
duced in recent years. These span a broad spectrum of 
optimization approaches, ranging from nature-inspired 
heuristics to gradient-based deterministic methods, and 
offer solutions for diverse problem domains. These in-
clude: (a) Genetic Algorithm;(b) Differential Evolution; 
(c) Particle Swarm Optimization; (d) Ant Colony Opti-
mization; (e) Artificial Bee Colony; (f) Firefly Algo-
rithm; (g) Imperialist Competitive Algorithm; (h) Simu-

Figure 4. Classification of Machine Learning Techniques
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lated Annealing; (i) Coupled Simulated Annealing; (j) 
Gravitational Search Algorithm; (k) Cuckoo Optimiza-
tion Algorithm; (l) Gray Wolf Optimization; (m) Whale 
Optimization Algorithm; (n) Levenberg-Marquardt Al-
gorithm; (o) Bayesian Regularization Algorithm; (p) 
Scaled Conjugate Gradient Algorithm; and (q) Resilient 
Backpropagation Algorithm.

AI has been extensively used in the upstream industry 
for various applications, including well testing, produc-
tion prediction, history matching (Costa et al., 2014), 
hydrocarbon property estimation, oil field development 
(Sircar et al., 2021; Ren et al., 2024), and fracture pa-
rameter predictions (Ahmed et al., 2019; Nande, 2018). 
While AI-driven intelligent models have brought signifi-
cant improvements, their effectiveness needs to be care-
fully studied. A key challenge lies in selecting appropri-
ate algorithms for reservoir fluid flow analysis, particu-
larly in assessing reservoir rock, fluid, and rock-fluid 
interaction properties to determine the fraction of en-
hanced oil recovery. Additionally, well-test analysis and 
formation damage analysis still require more advanced 
specialized algorithms. It is crucial to evaluate how ac-
curately AI can deduce rock parameters, fluid parame-
ters, and rock-fluid interaction parameters, ensuring that 
these deductions align with real field conditions. Even if 
AI can accurately predict all reservoir properties using 
advanced algorithms, we still need to check how close 
these predictions are to actual field scenarios. A key 
question is the role of detailed mathematical formula-
tions in fluid flow analysis of petroleum reservoirs and 
how much AI-based models – using pattern recognition, 
system identification, and cognitive processes – have 
been able to replicate real-world fluid flow behaviour. 

Another important area is understanding how AI per-
forms cross-validation during training and selects the 
most suitable reservoir model. The process of dividing 
datasets into training and validation sets, choosing data 
for learning versus validation, and deciding when to stop 
training needs further exploration. It is important to con-
sider whether achieving low errors in training and vali-
dation sets is sufficient to stop learning or if additional 
“blind” data is necessary for better evaluation. AI plays 
a crucial role in addressing disparities in data during the 
training phase of model development. These intelligent 
models learn by recognizing hidden patterns between in-
put reservoir properties and output responses, using op-
timization algorithms to improve performance. While AI 
is highly effective in handling large datasets, identifying 
patterns, and detecting trends, a key question remains: 
can AI fully capture all aspects of reservoir heterogene-
ity? Another critical consideration is the extent to which 
AI reduces uncertainty in reservoir performance. Ulti-
mately, the reliability of an AI model depends signifi-
cantly on the quality and quantity of reservoir data used. 
For instance, insufficient permeability data can chal-
lenge the model’s ability to make accurate predictions. 
Moreover, in cases where data is limited, dividing the 
dataset into training, validation, and test subsets may not 
be feasible, further impacting the robustness and relia-
bility of the intelligent model. These limitations high-
light the need for quality data and careful handling dur-
ing model development.

In essence, introducing AI has essentially translated the 
reservoir scientific basis into an art form as it essentially 
hangs around pattern recognition. This particular ap-
proach by any user, in the absence of acquiring the actual 

Table 3. Advantages and disadvantages of application of various ML algorithms in reservoir simulation (Zhou et al., 2024)

Algorithm Advantages Disadvantages
Linear Regression Interpretable and suitable for variable data. Cannot model nonlinear relationships.

Fuzzy Logic Handles uncertainty and reduces noise. Requires domain expertise and algorithm 
knowledge.

Decision Trees Easy to interpret using root-to-leaf rules. Prone to overfitting; pruning is challenging.

Random Forest Accurate; handles high-dimensional, noisy data. Limited effectiveness in low-dimensional 
scenarios.

XGBoost Efficient, handles missing data, and controls 
overfitting well.

Poor fit for petroleum scenarios; prone to 
overfitting.

AdaBoost Low error, simple coding, no tuning. Ineffective in scenarios with many outliers.

Support Vector Machine Accurate; robust to noise and outliers; handles 
nonlinear data.

Kernel selection is challenging for specific 
problems.

Evolutionary Algorithms Few parameters; minimal background 
knowledge needed.

Easily falls into local optima;  
requires scenario-specific objectives.

ANN Handles complex relationships and noisy data 
effectively.

Difficult to design; requires complex training 
and many parameters.

RNN Processes sequential data with memory 
capabilities.

Struggles with historical data; prone to gradient 
issues.

LSTM and variants Manages long dependencies and gradient issues 
effectively.

Long training, parameter-heavy,  
and computationally intensive.
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reservoir drainage physical principles, while mostly play-
ing with the data set alone, may not help the engineer in 
the long run, and this approach survives with art as a basis 
while science seems to be missing completely.

4. �Coupled Effect of AI and Reservoir 
Simulation

As far as the reservoir engineering discipline is con-
cerned, the concept of AI/ML remains widely used in 
reservoir characterization, in particular, reservoir pres-
sure, temperature and volume estimations, including 
bubble point pressure, formation volume factor, isother-
mal compressibility and brine salinity. In addition, ML 
has also been used in a compositional oil simulator to-
wards phase-equilibrium estimations that include phase-
stability tests and phase-splitting calculations (Mirzaei 
and Das, 2007). Reservoir rock properties, including 
porosity and permeability, have also been estimated us-
ing fuzzy logic and SVM (Koray et al., 2024; Lim, 
2005). An attempt has already been made to forecast the 
time-lapse saturation profiles at well locations using in-
jection/production data (Balza and Li, 2020). In fact, 
extreme learning machines (ELM) have helped to fore-
cast multiple reservoir parameters, namely lithofacies, 
shale content, saturation and reservoir porosity (Lawal 
et al., 2024; Liu et al., 2021). Further, ANNs not only 
helped to forecast bottom hole pressure in vertical wells 
but also have aided multi-dimensional interpolation of 
relative permeability to overcome the influences of vari-
ous parameters during hybrid recovery processes.

Now, considering three possible approaches for im-
plementing ML algorithms: (a) developing surrogate 
models for relatively homogeneous and isotropic reser-
voirs to reduce computational resources and costs; (b) 
creating ML models for reservoirs where human exper-
tise is crucial, particularly for reservoir planning and 
field management decisions during hydrocarbon produc-
tion; and (c) developing ML models for highly heteroge-
neous and anisotropic reservoirs, which are more com-
plex to understand and model. The first two options can 
be managed with reservoir simulation, while the third 
option may still require the help of AI/ML along with 
reservoir simulation. However, it should be clearly not-
ed that in petroleum reservoir fluid flow analysis, the 
reservoir environment is mostly heterogeneous, with 
every decision becoming extremely expensive, while the 
available data remains highly sporadic in nature. How-
ever, the petroleum production period being longer, ef-
ficient use of AI/ML could be expected to offer long-
term gains when it merges hands with the scientific-
based reservoir simulation. And, AI/ML algorithms are 
expected to play a crucial role in addressing the chal-
lenges associated with (a) large amounts of biased data 
(not all the rock, fluid, rock-fluid data uniformly); (b) 
various data associated with various scales; (c) a signifi-
cant amount of inconsistent and inaccurate data; and (d) 

high rate of biased data influx (again, not, all the rock, 
fluid, rock-fluid data influx uniformly) (Koroteev and 
Tekic, 2021). On top of it, now, AI/ML would be able to 
scrutinize, filter and select the daily produced data from 
downhole as well as from surface sensors effectively as 
against the conventional structured and unstructured 
data used in the petroleum industry to keep track of pro-
duction, maintenance and safety. Of course, in the petro-
leum industry, securing accurate data either becomes 
nearly impossible or extremely expensive and eventual-
ly, whether we will be able to provide a sufficient quan-
tity and quality data for training, verification and valida-
tion remains a crucial task. The other drawback associ-
ated with the AI/ML approach is the time delay 
associated with the data processing because a significant 
amount of data is associated with high uncertainty.

In general, conventional scientific engineering analy-
sis using reservoir simulators often faces challenges due 
to the extensive data requirements for reservoir rock 
properties, fluid properties, and rock-fluid interactions. 
Introducing AI techniques can help identify and model 
the complex non-linear relationships between these pa-
rameters, improving our understanding of their interac-
tions. However, the success of AI depends heavily on 
collecting and filtering credible data from reservoir sites. 
While AI techniques offer potential, relying solely on 
them without incorporating reservoir simulation can 
lead to inaccurate correlations, unrealistic clustering, 
and biases due to missing data or unstable oil-water 
fronts (Ertekin and Sun, 2019). This highlights the 
need for a balanced approach. Advanced methods like 
transfer learning can address this gap by starting with a 
reservoir simulation model and refining it using AI/ML 
with specific training data. Combining AI/ML with res-
ervoir simulation can reduce the computational chal-
lenges of solving complex coupled PDEs and provide 
deeper insight into petroleum reservoirs. This hybrid ap-
proach offers a more reliable and efficient way to model 
and analyze reservoirs.

It is now clearly known that reservoir simulation has 
a very strong scientific basis, while AI has a very strong 
art basis. If the petroleum industry makes an attempt to 
couple these two approaches in the best possible way, 
then the characterization of fluid flow through petroleum 
reservoirs will end up with minimal uncertainty while 
gaining the maximum benefit. The concept of reservoir 
simulation remains well known in the petroleum indus-
try, while the application of AI in the petroleum industry 
is not in full swing. The way various data needs to be 
trained and the appropriate selection of algorithms meant 
for the successful estimation of reservoir rock and fluid 
parameters require a special skill. In essence, merging 
science and art elevates multi-phase fluid flow analysis 
to the next level. By integrating AI with reservoir simu-
lation, we preserve traditional reservoir simulation prac-
tices while embracing advancements in AI. This ap-
proach enables the petroleum industry to leverage the 
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strengths of both methods, leading to more effective 
characterization of multi-phase fluid flow in petroleum 
reservoirs.

5. Conclusions

This article highlights the limitations of the current 
approach to reservoir simulation, particularly the reli-
ance on petroleum software packages without a solid 
understanding of reservoir physics and mathematical 
principles. It also critiques the use of machine learning 
and artificial intelligence in reservoir characterization, 
viewing it more as an art than a rigorous science. Finally, 
the study explores the integration of reservoir simulation 
and AI, discussing its potential to transform the petrole-
um industry by enabling more advanced and accurate 
fluid flow analysis.

The following conclusions have been deduced from 
the present study.

1. � The current approach to reservoir simulation 
through numerical modelling often ignores the fun-
damental physics of reservoir behaviour and the 
formulation of conceptual and mathematical mod-
els using applied reservoir mathematics. Instead, 
the focus is mainly on developing advanced numer-
ical solution techniques, many of which do not fol-
low the basic principle of fluid mass conservation.

2. � Using petroleum reservoir simulation software 
without developing conceptual, mathematical, or 
numerical models – and relying on input data that 
is often not justified in terms of scale and uniform-
ity – is not suitable for academic purposes. This 
method is more appropriate for industry profes-
sionals who have the expertise to understand dif-
ferent aspects of modelling. In an academic set-
ting, fresh graduates may lack the necessary 

knowledge to correctly interpret simulation re-
sults. Industry experts, on the other hand, can care-
fully analyze results while considering the limita-
tions and challenges at each stage, leading to better 
interpretations.

3. � In AI applications, unlike traditional reservoir sim-
ulation, pre-processing of data is a very important 
step where proper measures are taken before using 
the data for processing. The introduction of AI has 
made reservoir science more dependent on pattern 
recognition, turning it into an art rather than pure 
science. However, depending only on data manip-
ulation without understanding the actual physical 
principles of reservoir drainage may not be a sus-
tainable approach in the long run, as it moves away 
from the scientific foundation.

4. � By combining “art-based AI” with “science-based 
reservoir simulation,” we can continue the tradi-
tional practice of reservoir simulation while adopt-
ing AI advancements. This hybrid approach allows 
the petroleum industry to benefit from the strengths 
of both methods, leading to better characterization 
of multiphase fluid flow in reservoirs. It prevents a 
complete shift from knowledge-based models to 
only data-driven AI/ML techniques, ensuring that 
AI supports rather than replaces traditional reser-
voir simulation.

5. � Finally, this study highlights the importance of 
fundamental physics in reservoir simulation and 
its role in developing AI-based models. It also pro-
vides guidance for entry-level reservoir engineers 
on how to approach reservoir simulation problems, 
explaining the essential steps required for effec-
tively simulating subsurface processes. Addition-
ally, thought-provoking questions have been in-
cluded to encourage further research in this field.

Figure 5. Key steps in data 
preprocessing, processing, 

training and testing
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SAŽETAK

Primjena umjetne inteligencije u simulaciji ležišta za karakterizaciju protoka 
višefaznoga fluida kroz naftna ležišta

Umjetna inteligencija (AI) brzo napreduje i utječe na sva znanstvena područja, uključujući i naftnu industriju, gdje ona 
više nije novost. Ovaj članak istražuje razvoj umjetne inteligencija i njezinu integraciju s tradicionalnim pristupima si-
mulacije ležišta. Prvi dio rada ističe sve manji naglasak na konceptualno i matematičko modeliranje u simulaciji ležišta, 
uz rastući fokus na sofisticirane tehnike numeričkoga rješenja. Ovaj pristup često zanemaruje temeljnu fiziku i matema-
tiku ležišta, što dovodi do površne karakterizacije višefaznoga protoka fluida u naftnim ležištima. U drugome dijelu rada 
analizirano je često korištenje softverskih paketa u naftnoj industriji, koji se u velikoj mjeri oslanjaju na ulazne podatke, 
a da pritom ne uzimaju u obzir varijacije u skalama podataka. Ti alati tretiraju temeljno programiranje kao „crnu kutiju”, 
često zaobilazeći ključne temeljne znanstvene discipline poput konceptualizacije ležišta, primijenjene matematike i 
numeričkih tehnika, što rezultira nepotpunom karakterizacijom ležišta. U trećemu dijelu rada razmatrana je uloga stroj-
noga učenja (ML) i umjetne inteligencije u primjenama na ležištima. Dok znanost o podatcima igra ključnu ulogu, ne-
dostatak integracije s temeljnim fizičkim zakonitostima ležišta svodi analizu protoka fluida na „umjetnost” bez znan-
stvene strogosti. U zadnjemu dijelu rada predložen je hibridni pristup koji povezuje AI/ML s tradicionalnom simulaci-
jom ležišta. Ova integracija premošćuje jaz između znanstveno utemeljene simulacije ležišta i analize protoka fluida 
vođene umjetnom inteligencijom, omogućujući naftnoj industriji da postigne novu paradigmu za analizu višefaznoga 
protoka fluida. Kombinirajući temeljnu znanost s naprednim tehnikama umjetne inteligencije, ovaj pristup nudi sveo-
buhvatni okvir za preciznu karakterizaciju ležišta i poboljšanu proizvodnju ugljikovodika.

Ključne riječi: 
umjetna inteligencija, strojno učenje, simulacija ležišta, konceptualni model, matematički model, numerički model
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