
99-110

99�

Rudarsko-geološko-naftni zbornik
(The Mining-Geology-Petroleum Engineering Bulletin)

DOI: 10.17794/rgn.2025.4.8

Original scientific paper

* Corresponding author: Bagas Anwar Arif Nur
e-mail address: bagasanwararifnur@gmail.com
Received: 30 December 2024. Accepted: 4 March 2025.
Available online: 27 August 2025

Machine Learning for Fully Automated  
Detection of Volcanic Seismic Signals  
in Real Seismic Records  
at Sinabung Volcano, North Sumatra

Bagas Anwar Arif Nur1,2* , Mohammad Hasib2  , Estu Kriswati2 

1 Department of Physics, State University of Jakarta, Jakarta.
2 Research Center for Geological Disaster, National Research and Innovation Agency (BRIN), Bandung.

Abstract
To mitigate damage from volcanic disasters, experts conduct thorough monitoring mainly through observing volcano 
earthquake types, as these patterns provide crucial insight into magma movement. Traditionally, the classification of 
earthquake types has been performed manually, a process that is both time-consuming and subjective. To solve this 
problem, several studies have developed machine-learning models to classify volcano earthquake types automatically. 
However, previous research typically trains and evaluates machine learning models on existing datasets. Although these 
models can classify volcanic earthquake types, they require manual selection of input earthquake signals for classifica-
tion. To fill this gap, this study aims to develop a machine learning model that integrates with an event detection algo-
rithm to enable fully automated detection in actual seismic recordings at Sinabung Volcano. This study employs the 
Short-Term Average/Long-Term Average (STA/LTA) method, which calculates the ratio between two time windows for 
event detection. Two machine learning models, namely a Multi-Layer Perceptron (MLP) based on neural networks and 
a Random Forest (RF) based on decision trees, are used to classify the events detected by the STA/LTA method. Conse-
quently, this approach enables the machine learning models to operate fully automated. In this study, we first detect 
events using the STA/LTA method on a daily basis; subsequently, each detected event is classified using a machine learn-
ing model developed based on the dataset. RF and MLP successfully predict relative low difference percentage compared 
to the actual number in earthquake catalogue, with values of VT 5.31%, LF 46.62%, and EXs 30.95%. Automated detec-
tion and classification can improve the efficiency of mitigating the risks associated with volcanoes by identifying poten-
tial anomalies in advance.
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1. Introduction

Volcanic eruptions are one of the natural disasters that 
have a significant impact on human life. Volcano moni-
toring could be investigated in many ways, including 
seismic activity, surface deformation, gas composition 
and emission ratio, and heat flux (Power et al., 2021). 
Seismic activity plays an essential role in monitoring 
volcano because it provides valuable insight into the 
movement of magma beneath the Earth’s surface (Batt-
aglia et al., 2019; Hasib et al., 2022). This movement 
could be used to predict and assess volcanic hazards and 
determine the level activity of the volcano by analyzing 
the number of earthquake events that occur (Battaglia et 
al., 2019; Sparks et al., 2012).

The problem with seismic monitoring is that the man-
ual classification of volcanic earthquakes takes time be-

cause it is continuously monitored. In contrast to humans, 
machine learning can solve complicated problems like 
seismic recognition more quickly and avoid subjective 
decisions. Several previous studies proposed the useful-
ness of machine learning in classifying volcanic earth-
quakes. Malfante et al. (2018) developed machine learn-
ing models called Support Vector Machine (SVM) and 
Random Forest (RF) classifiers to classify the six types of 
volcanic earthquakes. SVM and RF were chosen in this 
study due to their simplicity and powerful performance, 
with RF having the best performance, reaching 92% ac-
curacy. Other studies have utilized spectrograms as input 
to machine learning models, treating them as images to 
be classified by the Convolutional Neural Networks 
(CNN) model that has shown to have the ability to learn 
spatial and temporal features. The results showed accu-
racy of up to 96% (Curilem et al., 2018a) and 94% (Cal-
derón et al., 2020). On the other hand, Curilem et al. 
(2018b) measured the similarity of two signals by calcu-
lating the correlation coefficient of their spectrograms 
and using it as input for a K-Nearest Neighbors (KNN) 
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model, which resulted in a less than 5% error. Similarly, 
Pérez et al. (2022) classified earthquakes by measuring 
the morphological similarity of spectrograms using Man-
hattan Distance (L1-norm), Euclidean Distance (L2-
norm), and Distance Correlation, with this method, the 
system performs faster than other previous studies and 
performance reaches 97% accuracy.

Most previous research has relied on datasets for 
model testing, which may not fully reflect the perfor-
mance of these models on actual seismic records. There-
fore, this research aims to develop a machine-learning 
model that can be used on actual seismic records. The 
model is trained and evaluated on existing datasets and 
tested on actual seismic records to better understand 
how machine learning performs in real-world volcanic 
monitoring scenarios.

1.1. The Sinabung activity

Sinabung Volcano is part of the Sunda volcanic arc 
formed by the subduction of the Indo-Australian Plate, 
located in Karo, North Sumatra (see Figure 1). It ac-
tively began after the latest caldera-forming of Toba 
Lake in the Pleistocene-to-Holocene transition (74,000 
years ago), divided into two main phases, old and young 
stages. The old and young stages correspond to the peri-
ods before and shortly after the 2010 eruption (Hasib et 
al., 2024). In the old stages, the western part was mainly 
formed by porphyritic two-pyroxene andesite lava flows. 
In the early stage, the new edifice was formed with the 
composition of lava flows and pyroclastic deposits, por-
phyritic two-pyroxene basaltic andesite to hornblende 
two-pyroxene andesite (González et al., 2015). The 
Sinabung Volcano was classified as a type-B until 2010, 
a volcano that has not shown any activity for the past 
400 years. Sinabung Volcano is a stratovolcano type 
with a diameter of less than 5 km and an elevation of 
2460 m above sea level (Nakada et al., 2019; Pallister 
et al., 2019). Sinabung Volcano activity in the 21st cen-
tury first appeared in August 2010 and was followed by 
six additional eruptions in September, with ash column 
heights reaching 7 km in altitude (Wright et al., 2019).

Since it became active again, the Sinabung Volcano 
continued to erupt until the following year and reached 
the “AWAS” level in 2013, the highest level on Indone-
sia’s volcano status. The Sinabung Volcano erupted on 
September 15 and September 17–18, 2013. A lava dome 
was formed on the northeast side and collapsed on De-
cember 13th, 2013, causing a pyroclastic flow (Kriswa-
ti et al., 2024). In mid-September 2014, a large eruption 
occurred with a Volcanic Explosivity Index (VEI) of 3 
and ejected ash up to 6 km in altitude (Pallister et al., 
2019). In 2016, the Center for Volcanology and Geolog-
ical Hazard Mitigation (CVGHM) reported that during 
the period of January 4-14, 2016, hot avalanches and py-
roclastic flow occurred. In the same period, ash plumes 
from 40 observed events rose to 3 km in altitude with 
high seismicity remaining up to April 2016 (Global Vol-

canism Program, 2016). In May 2016, a large eruption 
occurred with a dense ash plume ejected to 12 km 
(39,000 ft), resulting in the death of 7 people due to la-
hars and Pyroclastic Flow. During May-October 2016, 
ash plumes generally rose to an altitude of 3.3–5.5 km 
with an alert level of 4 on a scale of 1– 4 (Global Vol-
canism Program, 2017; Hasib et al., 2024). From Oc-
tober 2014 to June 2017, Sinabung continued to erupt 
and produce pyroclastic flows (Nugraha et al., 2019; 
Hasib et al., 2024). Then, the Sinabung eruption contin-
ued until August 2018, with the largest eruption on Feb-
ruary 19, 2018 with a column height reaching about 19.3 
km in altitude (Kriswati et al., 2024).

Figure 1. Location of Volcano Sinabung on Sumatra Island. 
The red triangle indicates the summit’s location, while the 
black rectangles represent the seismic stations Sukanalu 

(SKN) and Laukawar (KWR).

2. Methods

In this study, the first stage involved development a 
classification model using a dataset of seismic records. 
The dataset consists of three classes of volcanic earth-
quakes: Volcano-Tectonic (VT), Low-Frequency (LF), 
and Explosion Earthquakes (EXs).

VT earthquakes occur due to cracks forming beneath 
the volcano, often caused by brittle failure under stress 
from fluids (Clarke et al., 2019). These events can indi-
cate the volcano’s stress state (Traversa & Grasso, 
2010). VT events typically feature clear P and S wave 
onsets and have a dominant frequency range of 5 – 15 
Hz (Sánchez et al., 2009). Unlike VT events, LF events 
lack a distinct P-wave and have dominant frequencies 
between 0.2 and 5 Hz. They are triggered when fluid 
moves or fills rock cracks (Clarke et al., 2019). On the 
other hand, EXs is a type of seismicity caused by rapid 
pressure release in the conduit or beneath the crater (Ha-
sib et al., 2019). EXs events had a clear onset with a 
dominant frequency of 1 – 5 Hz (Permana et al., 2021). 
Figure 2 is an example of a waveform and associated 
spectrogram of these events.
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Each class comprises 100 sample data representing 
the characteristics of the type of earthquake in Sinabung 
Volcano. The VT and LF events in this study have vary-
ing durations, ranging from 55 to 60 seconds, while EXs 
reach up to 300 seconds. We did not standardize the 
waveform durations to capture the complete information 
of each waveform during feature extraction, ensuring 
that the entire earthquake wave was analyzed. This ap-
proach helps prevent potential time domain distortions 
and minimizes time-frequency representation altera-
tions, particularly for longer-duration waveforms. The 
label for each data member follows the seismicity crite-
ria on Sinabung Volcano mentioned by Gunawan et al. 
(2019) and the CVGHM catalogue (CVGHM., 2023).

After obtaining labelled data, we performed feature 
extraction, a process that transforms raw data into mean-
ingful information or value called features for analysis 
(see Figure 3). This stage involves statistical calculation 
and specific properties of the signal from multiple do-
mains, including time, frequency domain, and time-fre-
quency representation (spectrogram). The features sug-
gested in Table 1 were selected based on their capacity 
to provide details about wave shape, spectrum content, 
and time-varying spectrum.

The value of each extracted feature exhibits a differ-
ent range of values. Certain features will have a smaller 
range than others, which leads to some classifiers ignor-
ing them and only focusing on features with a large 
range (Singh & Singh, 2020). Normalization was per-
formed to resolve this issue by scaling the feature values 
to fall within the same range and ensuring that all fea-
tures contributed evenly during the training phase and 
were not ignored by classifiers, which improved the 
model’s performance (Pandey & Jain, 2017; Singh & 
Singh, 2020; Pei et al., 2023) (see Figure S1 in the 
Supplementary data). In this stage, we also performed 
Principal Component Analysis (PCA) to reduce the di-
mensionality while preserving essential information. 
PCA offers several benefits. First, it helps uncover hid-

den patterns that may not be visible in higher dimen-
sional space. Second, it improves the model’s perfor-
mance by removing the influence of noise and irrelevant 
features. Additionally, PCA facilitates visual analysis by 
projecting data into lower dimensional space and allow-
ing us to determine the degree of similarity between 
group members based on their distance from each other.

After the feature extraction process was complete, the 
model was trained to classify types of volcanic earth-

Figure 2. An example of a seismic record at Sinabung Volcano was in 2016.  
The left to right panel shows examples of the types of Low Frequency (LF),  

Volcano-Tectonic (VT), and Explosion Earthquake (EXs) events, respectively.  
The top panel shows the waveforms and the bottom panel shows its spectrogram.

Table 1. Feature List

Feature 
Name Formula Domain

Mean
Time 
Domain, 
Frequency 
Domain, and 
Spectrogram

Kurtosis

Skewness

Shannon 
Entropy

Time Domain

Renyi Entropy

Zero Crossing 
Rate

Energy

I of Central 
Energy

Standard 
Deviation Frequency 

DomainFrequency 
Dominant
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quakes. The model used is Multi-Layer Perceptron 
(MLP) and Random Forest (RF), which were success-
fully used in the case of classifying types of volcanic 
earthquakes (Langer et al., 2009; Malfante et al., 
2018). MLP is a model in machine learning that imitates 
the principles of biological neural networks. MLP has 
structure generally consists of three parts, namely the in-
put layer, hidden layer, and output layer, which are con-
nected (Shah et al., 2017). MLP works in two stages, the 
feed-forward stage, where the input value is predicted. 
In the feed-forward stage, the MLP model will calculate 
the error by comparing the result and prediction. The er-
ror value from this calculation will be used to update the 
weight in the backpropagation phase (Jahani & Saffar-
iha, 2022). MLP has good capabilities in the case of 
non-linear data due to the use of non-linear activation 
functions in the hidden and output layers (Jahani & Saf-
fariha, 2022; Langer et al., 2009).

Meanwhile, Random Forest (RF) is a supervised 
model in machine learning which can perform classifica-
tion or regression tasks and can overcome imbalanced 
data and outliers (More & Rana, 2017). Random Forest 
is an ensemble learning method that uses the concept of 
bagging or so-called bootstrap aggregating. The idea of 
Random Forest is to ensemble the number of decision 
tree. Each tree provides a vote for the predicted class of 
a given x, with the final prediction determined by major-
ity voting among trees in the ensemble (Kulkarni & 
Lowe, 2016; Y. Liu et al., 2012). In general, increasing 
the number of classifiers used will increase the resulting 
accuracy in the context of bagging (Kulkarni & Lowe, 
2016). Both models are reliable for real-word prediction. 
MLP capable of generalization making it effective to 
predict unseen data. Meanwhile, Random Forest is ro-
bust to noise and well-suited for data with high variabil-
ity (Altay & Altay, 2023; Irandzad & Liu, 2024).

The multi-layer perceptron model was developed us-
ing the LBFGS solver with a regularization strength of  

α = 10–5 and a neural network consisting of four hidden 
layers. Additionally, a Random Forest model was con-
structed with a maximum depth of 20, a minimum of 
two samples required for node splitting, and at least one 
sample per leaf node. The performances of trained mod-
els are evaluated on 20% of split data from the dataset 
and serve as the test set for evaluating model perfor-
mance in terms of accuracy and precision. For compari-
son, we also replicate the method proposed by Pérez et 
al. (2022) and calculate the performance of L1 and L2.

Testing with actual seismic records was conducted us-
ing the STA/LTA method, with STA set to 10s and LTA 
35s window lengths. The threshold of trigger-on and 
trigger-off for STA/LTA are 3 and 1, respectively. This 
specific value of window duration and trigger threshold 
is chosen to make the STA/LTA detection algorithm not 
overly sensitive and avoid false triggers during detection 
caused by noise spikes (Trnkoczy, 2009). The event de-
tected using STA/LTA has the criteria of 20 seconds be-
fore and after the trigger. The cut was not set at the same 
duration to ensure that the cuts successfully captured the 
full waveform of the volcanic earthquake events. The 
result of STA/LTA detection will undergo the same fea-
ture extraction, normalization, and dimensionality re-
duction procedures as those applied to the training set. 
The normalization and dimension reduction on STA/
LTA picking data use the same values that have been fit 
in the dataset; this is so that the new transformed values 
follow the criteria and ranges used in the dataset training 
and evaluation. This ensures that the detected events fol-
low the same feature distribution as the training dataset, 
maintaining consistency in the analysis.

For the final step in this study, we predicted the event 
class from STA/LTA detection following the method 
proposed by Ibs-von Seht in (2008). However, the num-
ber of earthquake types that were analysed in this study 
is limited. To ensure the prediction results belong to one 

Figure 3. Workflow of the proposed method. The section envelope, a red rectangle, shows the dataset training and evaluation 
flow. Meanwhile, the section envelope, a blue rectangle, shows the real seismic record testing and evaluation flow.
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of predefined class, Euclidean Distance was used as a 
threshold value for accepting predicted results, with test-
ed values being 0.3, 0.4, and 0.5. Evaluation in actual 
seismic record conducted by measuring the similarity of 
the trendline between the results of the model and the 
earthquake catalogue using Pearson correlation and dif-
ference percentage between number predicted and cata-
logue count. And lastly, we compare the performance of 
the model against L1 and L2 classifiers.

3. Results and discussion

PCA analysis is carried out to see how the data is dis-
tributed (Ivosev et al., 2008). Figure 4 shows that each 
earthquake type occupies a distinct region in the feature 
space, indicating high inter-class and low intra class-
variation. These characteristics suggest that the selected 
features effectively capture class variations, which may 
aid the ability of a model trained with these features set 
to distinguish each type of earthquake. Furthermore, as 
explained in the methodology section, we use Euclidean 
distance to limit and validate the prediction on actual 
seismic records. In Figure 4, the member of each type of 
earthquake event has a distance to the centroid from 0.3 
– 0.5, where this value will be used as a threshold value 
to validate the prediction.

types of analyzed earthquakes. Our study examines three 
types of volcano earthquakes (VT, LF, and EXs), while 
the previous studies only examine two types (VT and 
LF). This difference in accuracy is likely due to the EXs 
sharing some characteristics with VT and LF, like low 
frequency component and long period phase (Cár- 
denas-Peña et al., 2013; Miwa et al., 2009; Titos et  
al., 2020). (See Table S3. and S4. in the Supplementary 
Material).

Testing on 20% of the dataset indicates that the devel-
oped model performs robustly. However, testing is nec-
essary on the actual seismic records to develop a fully 
automated system. According to the scheme explained 
in the methodology section, testing for real-world data 
involves detecting volcanic events using STA/LTA and 

Table 6. Confusion Matrix of L2

Predicted Label
LF EXs VT

True Label
LF 18 0 0
EXs 12 11 0
VT 3 1 15

Table 2. Performance Metric for Classifier

Classifier Accuracy Precision
MLP 98.33% 98.42%
RF 98.33% 98.42%
L1 55% 68.65%
L2 73.33% 83.17%

Table 3. Confusion Matrix of MLP

Predicted Label
LF EXs VT

True Label
LF 18 0 0
EXs 1 22 0
VT 0 0 19

Table 4. Confusion Matrix of RF

Predicted Label
LF EXs VT

True Label
LF 18 0 0
EXs 1 22 0
VT 0 0 19

Table 5. Confusion Matrix of L1

Predicted Label
LF EXs VT

True Label
LF 3 11 4
EXs 0 22 1
VT 0 11 8

Figure 4. The dataset will be distributed using PCA  
with 2 principal components. The red star, green triangle, 
and blue asterisk show the distribution of LF, VT, and EXs, 

respectively.

Tables 2 and 3 to 6 show the performance and the 
confusion matrix for all models that have been devel-
oped, respectively. For the model developed by RF and 
MLP, the accuracy and precision values reached 98%. 
This high performance demonstrates the models’ ability 
to accurately discriminate between different volcanic 
earthquake. The L1-norm model showed the lowest per-
formance, with an accuracy of only 55% and a precision 
of 68%. The lower accuracy compared to Pérez et al. 
(2022) may be due to the differences in the number of 
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Figure 6. Pearson correlation for each type of volcano earthquake.  
The left shows the result using a) RF, and right b) using MLP.

Figure 5. The comparison between prediction results using MLP and earthquake catalogue for each day.  
The top panel for each colour shows the earthquake catalogue and the bottom panel shows the total number  

of earthquake predictions. Black does not present record data.
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classifying with the developed RF and MLP. We also use 
two additional classifier methods (L1 and L2) for com-
parison. Euclidean distance is used to measure the dis-
tance for each data point to the centroid of the corre-
sponding class, which helps avoid prediction of earth-
quake type that is not included in our analysis based on 
smoothness assumption (Pérez et al., 2022; van Engel-
en & Hoos, 2020). Figure 5 compares the predicted re-
sults using a machine learning model (MLP) that has 
been developed and the earthquake catalogue for daily 
events in January – October 2016. (For another classifi-
er, please see Figure S2 to S4 in the Supplementary 
data).

Figure 6 illustrates the evaluation of trendline simi-
larity between the predicted results and the earthquake 
catalogue, using the Pearson correlation coefficient 
(Ahlgren et al., 2003; Sun et al., 2022). The Pearson 
correlation coefficient has a score ranging from -1 to +1 
(Mana & Sasipraba, 2021). In this context, we treated 
the predicted results and the catalogue counts as interde-
pendent variables, meaning both variables should have 
positive Pearson coefficients indicating that they in-
crease together, reflecting their similarity (Di Lena & 
Margara, 2010).

Evaluation of trendline similarity is conducted by 
varying the threshold value or Euclidean distance for the 
model developed by machine learning (RF and MLP) 
and calculated with Pearson correlation in Figure 6. 
Figure 6 shows that for both RF and MLP models, the 
trendline similarity values of VT and LF type tend to be 
constant or have no significant change for all threshold 
values. In contrast, the trendline for EXs becomes more 
similar with an increased threshold. As indicated in Fig-
ure 4, this outcome is expected since EXs exhibit a 
broader distribution. Hence, a high threshold is required 
to predict data points be farther from the centroid.

The calculation of the difference between the predict-
ed number and the catalogue is shown in Table 7. A 
smaller difference percentage indicates a higher similar-
ity between the predicted results and the earthquake 
catalogue. LF events have characteristics where they of-
ten exhibit emergent signals without unclear onset, this 
characteristic may result in a large difference percentage 
in LF class as a result using the STA/LTA method. STA/
LTA operates by calculating the ratio between the aver-
age of the short-term and long-term window, emergent 
signal lacks a contrast transition between these win-
dows. As a result, the ratio between two window will be 
low and fail to trigger the detection (McNutt & Roman, 
2015; Saccorotti & Lokmer, 2021). Tables 5 and 6 
show that L1 and L2 often misclassify other earthquake 
event types as EXs. Leading to a mismatch between pre-
dictions and the catalogue when applied to real seismic 
records in Table 7. On the other hand, the MLP and RF 
models demonstrate strong capabilities in predicting 
data from real seismic records, as presented in Table 7. 
For VT and LF events, the predictions from the MLP 

model align more closely with the values in the cata-
logue, likely due to its generalization ability. In contrast, 
the RF model excels in predicting EXs events, likely due 
to its robustness against noise and outliers, allowing it to 
be able to predict EXs with significant variability in the 
dataset.

Figures 7, 8, and 9 are examples of the model predic-
tion results derived from STA/LTA picks. Figure 7 pre-
sents the prediction results for an EXs showing that 
while the waveform characteristics of EXs differ, their 
spectrum and spectrogram appear similar. This variation 
in the waveform may be attributed to the nature of EXs, 
characterized by the partitioning of energy at the source, 
where part travels as seismic waves through the ground 
and part as acoustic waves through the air. The acoustic 
waves can couple back into the ground and be detected 
by the seismometer, potentially introducing additional 
complexity in the waveform due to propagation effects 
such as reflections or refractions, which may lead to al-
teration in the amplitude of the recorded signal (McNutt 
& Roman, 2015), causing wider data distribution of 
EXs, as seen in Figure 4. On the other hand, Figures 8 
and 9 show that VT and LF events have clearer, more 
visible similarities. These similarities may have caused 
the data distribution for these two types, as shown in 
Figure 4, to be more concentrated, with members of 
each group being closer to one another.

Table 8 displays the computational time for all classi-
fiers tested in the dataset. According to Table 8, the L1-
norm classifier is the fastest, with a computational time of 
3.49 s, whereas the RF classifier is the slowest, requiring 
5.75 s, this result is aligned with the previous study. Ac-
cording to Pérez et al. (2022), L1-norm is the fastest be-
cause it is performed in linear time by only summing the 
absolute difference, meaning that its computational com-
plexity is proportional to its input size. However, to build 
actual seismic record automated classification systems, 
computational time and performance need to balance each 
other. Our method offers both efficiency and accuracy.

However, our studies have some limitations that from 
the detection method where STA/LTA is less sensitive to 
detect events without a clear onset. Additionally, no pa-
rameter tuning was conducted, which may impact the 
optimality of the model’s performance and the limited 
number of samples in the dataset. Future work should 
consider alternative event detection methods and incor-
porate hyperparameter tuning to enhance model perfor-
mance (Wu et al., 2019; Yang & Shami, 2020).

Table 7. Difference percentage prediction for all classifiers

Classifier
difference Percentage

VT LF EXs
MLP 5.31% 46.62% 34.75%
RF 22.04% 59.97% 30.95%
L1 17.34% 98.90% 455.03%
L2 8.16% 51.09% 134.146%
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Figure 7. Prediction result from MLP. The left to right panel shows waveforms, frequency spectrum,  
and corresponding spectrogram, respectively, of EXs.

Figure 8. Prediction result from MLP. The left to right panel shows waveforms, frequency spectrum,  
and corresponding spectrogram, respectively, of VT.
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Figure 9. Prediction result from MLP. The left-to-right panel shows waveforms, the frequency spectrum,  
and the corresponding spectrogram of LF, respectively.

5. Conclusions

Understanding volcanic seismic activity is crucial for 
mitigating volcanic disasters and automated classifica-
tion system for detecting volcano earthquake events in 
actual seismic records play a crucial role. In this study, 
MLP and RF machine learning models were developed 
to identify the volcanic earthquake types in actual seis-
mic records. The results show that the prediction of ma-
chine learning models has a relatively low difference per-
centage compared to the actual number in earthquake 
catalogue, with values of VT 5.31%, LF 46.62%, and 
EXs 30.95%. The MLP has better performance in detect-
ing VT and LF due to its strong generalization capability. 
Meanwhile, RF is more capable of detecting EXs as its 
robust to high-variability class. In our result, both models 
offer time efficiency and high performance, achieving an 
overall accuracy of 98% on a dataset evaluation with a 
5-second duration running time. However, this study has 

Table 8. Computational time for all classifiers

Classifier Time (s)
MLP 5.66
RF 5.75
L1 3.49
L2 3.60

limitations related to the detection methodology, model 
tuning, and data availability. For future studies, several 
improvements can be explored, such as employing a de-
tection method more sensitive to all types of volcanic 
earthquakes, conducting hyperparameter tuning, or using 
semi-supervised learning to overcome the limitation of 
data. This study demonstrates that the development of an 
automatic earthquake classification system can be 
achieved using machine learning. The implementation of 
such an automated system offers several benefits, partic-
ularly in terms of time efficiency, which is a crucial factor 
in disaster mitigation related to volcanic activity. Moreo-
ver, the ability of machine learning to eliminate subjec-
tive assessments provides critical information for deci-
sion-making in evaluating volcanic hazard risks.
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SAŽETAK

Strojno učenje za potpuno automatizirano otkrivanje vulkanskih seizmičkih signala  
u stvarnim seizmičkim zapisima na vulkanu Sinabung, Sjeverna Sumatra

Kako bi ublažili štetu od vulkanskih katastrofa, stručnjaci provode temeljito praćenje uglavnom promatranjem vrsta 
vulkanskih potresa jer ti obrasci daju ključne uvide u kretanje magme. Klasifikacija tipova potresa tradicionalno se pro-
vodila ručno, proces koji je dugotrajan i subjektivan. Kako bi se riješio taj problem, nekoliko je studija razvilo modele 
strojnoga učenja za automatsku klasifikaciju tipova vulkanskih potresa. Međutim, prethodna istraživanja obično obuča-
vaju i ocjenjuju modele strojnoga učenja na postojećim skupovima podataka. Iako ti modeli mogu klasificirati tipove 
vulkanskih potresa, oni zahtijevaju ručni odabir ulaznih signala potresa za klasifikaciju. Kako bi se popunila ta praznina, 
cilj je ove studije razviti model strojnoga učenja koji se integrira s algoritmom za otkrivanje događaja kako bi se omogu-
ćilo potpuno automatizirano otkrivanje u stvarnim seizmičkim snimkama na vulkanu Sinabung. Ova studija koristi se 
metodom kratkoročnoga prosjeka / dugoročnoga prosjeka (STA/LTA), koja izračunava omjer između dvaju vremenskih 
okvira za otkrivanje događaja. Dva modela strojnoga učenja, Multi-Layer Perceptron (MLP) temeljen na neuronskim 
mrežama i Random Forest (RF) temeljen na stablima odlučivanja, koriste se za klasifikaciju događaja otkrivenih meto-
dom STA/LTA. Posljedično, ovaj pristup omogućuje potpuno automatizirani rad modela strojnoga učenja. U ovoj studiji 
prvo se otkrivaju događaji pomoću STA/LTA metode na dnevnoj bazi, nakon toga se svaki otkriveni događaj klasificira 
pomoću modela strojnoga učenja razvijenoga na temelju skupa podataka. RF i MLP uspješno predviđaju relativno nizak 
postotak razlike u odnosu na stvarni broj u katalogu potresa, s vrijednostima od VT 5,31 %, LF 46,62 % i EXs 30,95 %. 
Automatizirano otkrivanje i klasifikacija mogu poboljšati učinkovitost ublažavanja rizika povezanih s vulkanima utvrđi-
vanjem potencijalnih anomalija unaprijed.

Ključne riječi: 
vulkanski potres, STA/LTA, strojno učenje, vulkan Sinabung
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