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Abstract
Two reservoir porosity datasets are mapped using the Polynomial Regression (PR; zonal estimation), Inverse Distance 
Weighting (IDW) and Ordinary Kriging (OK; both are interpolations). Data were collected from sandstone reservoirs “K” 
(19 samples) and “L” (25 samples), of the Lower Pontian age, and located in the Sava Depression, Croatia. Maps were 
compared via cross-validation (mean square error) and visual inspection of key features. Datasets are considered as small 
(“K” reservoir) and large (“L” reservoir). In the “K” reservoir, the MSE values are 0.000119 for IDW vs. 0.05401 for PR. In 
the “L” reservoir the MSE are 0.000676 (OK) vs. 0.040117 (PR). Zonal estimation obviously did not prove as primary map-
ping in the sets with about 20 datasets. A linear interpolator like the IDW or OK are much better choices, especially if a 
spatial model can be reliably modelled, like in this case for porosity characterised with normal distribution, which fa-
voured the OK. However, zonal estimation can be a useful addon in interpretation, especially in zones where interpola-
tion is considering less reliable, like in transitional areas.
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1. Introduction

Fluid reservoir modelling is closely based on under-
standing spatial variations of numerous geological vari-
ables like porosity, permeability, saturation, mineral and 
lithological content. A better understanding of these 
variables improves recovery efficiency and longevity. 
Such data are, often, very scarce and irregularly distrib-
uted which makes it difficult to interpret them. Also, 
most of them are indirectly calculated which compli-
cates their reliability. This creates a dilemma in the se-
lection of the interpolation methods, which are practi-
cally one of the most important interpretative tools.

Here two datasets are analysed, one with 19 (reservoir 
“L”), and another with 25 (reservoir “K”) datasets, 
which make them small and larger (Malvić et al., 2019) 
datasets, respectively. Analysed reservoirs are chosen in 
the Croatian part of the Pannonian Basin System (CPBS), 
i.e. in the western part of the Sava Depression (see Fig-
ure 1), where numerous hydrocarbon fields had been 
discovered, and many of them are still in production. 
Both are of Lower Pontian age and mostly consist of 
medium-grained sandstones, where porosity values are 

calculated (from logs and cores) as reservoir’s averages 
in real wells and represent the most important available 
variable for spatial mapping. Regular geological map-
ping can be done with any number of data points, how-
ever dozens of them make maps reliable. In subsurface 
fluid reservoir’s mapping, such plentiful of data is rarely 
available, and 10 or so are datasets that need to be han-
dled, more or less, successful for development and re-
covery prediction. In such cases, methods like Kriging 
are less useful than mathematically simpler like Inverse 
Distance Weighting (IDW). Also, interpolation often, in 
very uncertain datasets (because of statistics or data 
sources), can be replaced with an even more basic ap-
proach on the zonal estimation. Here both such ap-
proaches are used as tests for the “average” reservoir in 
the selected area, looking for the answer regarding the 
most appropriate approach when choosing zonal estima-
tion (Polynomial Regression; PR), simpler interpolation 
(IDW) or more advanced interpolation (Ordinary Krig-
ing; OK).

The mentioned methods are widely used in geological 
researching, even in the CPBS. However, they are not 
limited only to geology, just the opposite. For example, 
application of the PR can be found in geography (Na-
jafzadeh & Kargar, 2019), meteorology (Weslati et al., 
2022), thermodynamics (Bal, 2022), mechanical engi-
neering (Trebuňa et al., 2016; Wu & Zhang, 2021), as-
tronomy and astrophysics (Jiménez-López, 2021), civil 
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engineering (Golnaraghi et al., 2020), petroleum indus-
try (Said, 2023; Al-Mudhafar et al., 2017; Kalla & 
White, 2007; Yao et al., 2023; Aminian et al, 1991; 
Wang et al, 2024) and others.

Furthermore, the Inverse Distance Weighting method 
has found applications in geography (Moeletsi et al, 
2016), meteorology (Chen & Liu, 2012), geology 
(Bokati et al, 2021), and electrical engineering (Barlak 
& Ozkazanc, 2011). The success of Ordinary Kriging is 
also not limited to a specific field, as it has been applied 
in geography (Rohma, 2022), geostatistics (Di et al., 
2023), and environmental science (Qiao et al, 2018).

2. Geological settings and location

The PBS, macro unit of the largest order, encompass-
es areas in eight countries, generally in Central Europe. 
That system is surrounded by the Carpathians, Alps and 
Dinarides as the regional mountain chains (orogens). 

The PBS started to be created during the Ottnangian due 
to convergence between the Euroasian and African 
Plates, i.e. subduction of the Apulian Plate below the Di-
narides. So, the PBS is a typical back-arc basin system, 
covered with numerous marine and lacustric environ-
ments, among which the largest was (part of) the Para-
tethys (Malvić & Velić, 2008).

The CPBS (see Figure 2), at the south-west margin, 
includes four geological macro units of the 2nd order, 
namely Mura, Drava, Sava and Slavonia-Srijem Depres-
sions. About 40 hydrocarbon fields were discovered 
with numerous reservoirs, mostly in the Upper Miocene 
sandstones.

In the CPBS, two main lithological macro sequences 
dominate. Their differentiation has been established 
based on lithology and geological background (Velić et 
al., 2012). The 1st, younger, includes mostly clastic sed-
iments, with minor biochemical (like Lithotamnium 
limestones) or magmatic (like basalts) appearances, of 

Figure 1. Regional schematic thickness map with largest volcanic outcrop areas  
and subdivision on depressions and basins of the Pannonian Basin System as geological unit  

of the highest order (Malvić et al., 2020).
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the Neogene and Quaternary periods. The 2nd, older, in 
the bottom is significantly older, from Mesozoic or Pal-
aeozoic eras, encompassing magmatic or sedimentary 
rocks, often metamorphosised. The 1st sequence in the 
Sava Depression is divided into six lithostratigraphic 
formations (Velić, 2007) where 3 of them, important for 
this research, are presented in Figure 3.

During the entire Neogene-Quaternary period there 
are two transtensional (Badenian and Pannonian-Early 
Pontian) and two transpressional (Sarmatian and Late 
Pontian-Quaternary) regional tectonic phases described 
for the CPBS (Malvić & Velić, 2011). Neogene and 
Quaternary cyclic sediments were divided in megacy-
cles with lithostratigraphic formations and members. 
Late Miocene (Pannonian and Pontian) cycle includes 
sedimentary association of the Sava Group (the Ivanić-
Grad, Kloštar-Ivanić and Široko Polje Formations) in 
the Sava and western Drava Depressions. Deposition 
lasted app. 5.9 million years, and it is represented by the 
sequences of grey coloured sandstones, siltites and 
marls. The maximum total thicknesses are deposited in 
the central part of depressions, pinching out toward the 
margins. These sandstones, siltites and marls are depos-
ited in deep lake environment basin sedimentation inter-
rupted with turbidites, with the main sources of the ma-

terial from the Eastern Alps. The main depositional 
mechanisms during Late Pannonian and Early Pontian 
were deep water turbidites and sequences of hemipelag-
ic marls were described as well, both in the marginal and 
the central parts of the basins. Several facies associa-
tions have been described: turbidite channel fill facies 
association - thick-bedded sandstones and thin-bedded 
sandstones; turbidite overbank-levee facies association 
- laminated sandstones, siltstones and marls passing into 
sandstones; distal turbidite facies association - alternat-
ing thin sandstones with siltstones and marls; massive 
marls facies association - marls with rare intercalations 
of thin siltstone or sandstone laminae.

The Sava Depression has been filled with sediments 
since the Early Neogene. However, the analysed reser-
voir rocks (“K” and “L” in Figure 3) are of the Late 
Neogene (Lower Pontian) age and they are a part of the 
Kloštar-Ivanić Formation. Arenitic sandstones prevail at 
the base of the formation, and more fine-grained sand-
stones intercalated with marl appear more frequently to-
wards the top, as well as in the overlying the Široko 
Polje Formation. Sandstone units (20-150 m thick) are 
the main reservoir rocks, and intercalated grey to brown 
marls (from 30-150 m thick) present the main isolator 
rocks. These Lower Pontian (“Abichi”) beds extend 

Figure 2. Macro units in the CPBS (modified from Velić et al., 2012).
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across the Sava Depression, are comprised of sandstones 
and marls. Sandstones were deposited from turbidite 
currents in the largest thicknesses in the central part of 
the depression, while marls were deposited as turbidites 
and settled from suspension. Generally, several unique 
lithofacies are developed which resulted from the Bou-
ma sequence, namely (1) interlaminated marlstone and 
sandy siltite/shale, (2) laminated marlstone interchanged 
with clayey-calcitic laminas and laminas with mica 
flakes and fine quartz grains, (3) fine-grained silty lithic 
greywacke sandstones to mudstones with quartz grains 
lithic fragments, bounded in matrix. (4) silty marlstones 
with kerogen; (5) lithic arenite sandstones with quartz 
grains and lithic fragments; (6) fine-grained fossiliferous 
lithic arenite sandstones; (7) coarse-grained lithic aren-
ite sandstone to petromictic breccia/conglomerate; (8) 
clast-supported petromictic conglomerate with sandy 
matrix. Some of them can be recognised locally, depend-
ing on the age and palaeoenvironment. The analysed res-
ervoirs belong to lithofacies 5 and 6.

The analysed reservoirs “L” and “K” are located at 
the margin of the western Sava Depression (see Figure 
4). They largely participate in the hydrocarbon potential 
of analysed zone. That part includes about 20 hydrocar-
bon fields still in production, but several others are de-
pleted. The largest ones are the Stružec Field (16x106 
m3 Original Oil In Place, abbr. OOIP) and the Ivanić 
Field (7x106 m3 OOIP) (Malvić & Velić, 2011). The en-
tire western part covers area of about 8.000 km2, where 
surface projection of the field’s areas takes about 930 
km2 (Ivšinović, 2019). Generally, a little deeper and 
more to the west, sediments described as the source 
rocks are located, with fine-grained sediments mainly 
enriched in kerogen. They correspond to previously de-
scribed lithofacies 1, 2 and sporadically 3. All are depos-
ited in the deeper lacustrine environment from basin 
sedimentation or at the distal parts of turbidites.

 � Figure 3. Typical lithological units in the 3 younger 
lithostratigraphic formations of the Sava Depression 
(Ivšinović & Malvić, 2020).

Figure 4. Regional map  
of the northern Croatia 
(upper right) enlarged  
with position of the western 
part of the Sava Depression. 
Two analysed fields are 
located inside marked green 
(modified from Ivšinović  
et al., 2020).
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3. �Mathematical basics of applied 
interpolation methods

Here the analytical methods applied in this research 
are described. The PR is used as a zonal estimator, and 
the IDW and OK as a linear interpolator. The Mean 
Square Error is calculated as an estimator of mapping 
numerical error.

The PR, as an estimation (here also zonal) method, 
was in the focus of this paper as a tool that could be a 
useful companion in the application of other linear inter-
polators like the IDW or OK. It could be useful when 
interpolation methods do not provide reliable solutions 
to the problem of constructing representative spatial dis-
tributions, for example in cases like low number of data 
points, clustering or numerous outliers. Moreover, po-
lygonal methods are considered in geostatistics (beside 
cell-declustering, e.g. Journel, 1983; Deutsch, 1989) as 
one of the declustering methods, where polygon of influ-
ence (known as Thiessen or Voronoi polygon, e.g. Chow, 
1964; Boots, 1987) includes all data points that are clos-
er to the sample compared to any other measurements. 
As a result, spatially separated data points will have 
larger polygons than clustered (grouped) ones. Such po-
lygonal declustering, characteristics for all zonal meth-
ods have been tested on two datasets presented in this 
research. The very unique feature of the PR in the soft-
ware used in this analysis (Golden software Surfer) is a 
parameter called Maximum Total Order (MTO). This 
determines the maximum powers for the X and Y com-
ponents in the polynomial equation, and all combina-
tions for X and Y are included in the calculation until the 
sum of powers does not exceed MTO.

3.1. The Polynomial Regression

The polynomial regression is a kind of improvement 
of simple linear regression, in the case that the relation-
ship between the data is non-linear. In such a case, the 
polynomial regression can better fit data, adding some 
polynomial terms into a linear regression equation and a 
modelling relationship between the dependent (Y) and 
independent (X) variables with the nth degree polyno-
mial function. The model is called a quadratic if such a 
polynomial has a degree of 2, a cubic for a degree of 3. 
The degree of function order can be set on any value 
(sometimes this order is considered as a hyperparameter 
as well), but selection must be done carefully because 
each polynomial function can be easily underfitted or 
overfitted (even if the least square method is used for 
minimizing the error). There is the “rule of the thumb” 
that in the subsurface mapping the fitting function could 
not be of the 5th or higher order. So, the right polynomial 
degree would need to lead to reasonable mapping struc-
tures (where the main ones are confirmed with other 
mapping method), but also with smaller cross-validation 
results (when several models are run).

The Polynomial Regression (PR) method describes the 
relation between independent variable x and dependent y, 
using a polynomial of the nth order suitable for the ap-
proximation of their relation (Wang et al., 2024). The PR 
can be calculated using Equation 1, (e.g. Yao et al., 
2023), and is used for non-linear relations, which can help 
in looking for a connection for more complex datasets.

	 � (1)

where:
yi 	 – �ith dependent variable;
xi 	 – �ith independent variable;
m 	 – �the mth order of regression;

 	 – �unobserved random error for ith data with mean 
zero conditioned on a variable x;

	– �values adjusted during the calculation.
Equation 1 represents a general polynomial regres-

sion term, which always includes model parameters and 
hyperparameter at the end. Here the “error” is marked as 
the correction parameter used for fitting the model dur-
ing iterations. Such a parameter is used to reach the op-
timal model parameters. In fact, any parameter that 
models the function shape is called hyperparameter. It 
could be the ratio between training and validation data-
sets, etc. Here, such a parameter is called the “error”, 
however, in the applied algorithms, the more important 
hyperparameter is the order of the fitting function, previ-
ous mentioned as the MTO. Here it is tested with several 
values between 1 to 10, optimising the regression model 
through an iterative model. The goal was to find the best 
value of hyperparameter, leading to the optimal map.

3.2. The Inverse Distance Weighting

The Inverse Distance Weighting (IDW) is a relatively 
simple linear interpolation where an unknown value is 
calculated from known data inside the search radius and 
the assumption that closer data is stronger participates in 
the interpolation of the unknown value. The interpola-
tion of the unknown value is defined by Equation 2 (e.g. 
Setianto & Triandini, 2013):

	 � (2)

where:
ZIU	– interpolated value;
di	 – distance to the ith location;
zi	 – known value at the ith location;
p	 – distance exponent.
It is obvious that interpolation is highly dependent on 

the distance exponent (p) and its selection is led by ob-
taining the logical visual shapes on the map, as well as 
minimal numerical error. In mapping, it is very often set 
on value 2 (Ly et al., 2011), especially for subsurface 
geological mapping in Northern Croatia (Malvić et al., 
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2019; Ivšinović & Malvić, 2020; Ivšinović & Malvić, 
2022; Andrić et al, 2021).

3.3. The Ordinary Kriging

A general linear equation is given in Equation 3 (e.g. 
Novak, 2015), where the higher value of the weighting 
coefficient points on a known value closer to the location 
where the value is estimated.

	 � (3)

where:
zk 	– value estimated at location „k“;
λi 	– weighting coefficient at location „i“;
zi 	 – measured value at location „i“.
The Ordinary Kriging (OK) equation is an upgraded 

Simple Kriging (SK) with the addition of the Lagrange 
factor (µ), aiming to minimizing the Kriging variance. 
Surely, both techniques minimize variance, but the OK 
is more successful if it is applied properly. Also, all other 
Kriging techniques (like Universal, Disjunctive, Indica-
tor...) have some additional “factors” with the same pur-
pose, designed for the specific analyses. The SK is the 
only algorithm where the sum of the weightings is not 
standardised at 1. Also, in the SK the mean is known, not 
global, and in the OK, the local one is used. Eventually, 
in all Kriging techniques (except for the Indicator) the 
normal distribution of input dataset is highly recom-
mended for more reliable results. It is closely connected 
with the requirements of the stationarity of the 2nd order 
where it is implied that the expectation is independent 
from the number and location of data, and covariance is 
dependent only on distances among the data (vario-
gram). Only the Indicator Kriging assumed the station-
arity of the 3rd order that implied independence of expec-
tation and variogram existence (intrinsic hypothesis). 
The Lagrange function is represented with Equation 4:

	 � (4)

where:
L (x, µ) 	 – Lagrange function;
f(x), h(x)	 – functions for the “x” values;
µ	 – Lagrange factor.
The Ordinary Kriging matrix equation can be present-

ed with Equation 5 (e.g. Mesić Kiš, 2016):

	 � (5)

where:
Γ 	 – variogram values;
Z1....Zn 	– measured values at locations “1...n”;
Z 	 – locations where new value is estimated;
μ 	 – Lagrange factor.

The mentioned property of the Ordinary Kriging is 
that the technique works with local mean (not global), 
which can be a pretty good feature for mapping geologi-
cal subsurface data, at least in the CPBS (Mesić Kiš & 
Malvić, 2016). It is a purely deterministic method, as 
well as Inverse Distance and Polynomial Regression, for 
example. All are “numerical and subjective”, and the 
stationarity (on some order) can be criteria for choosing 
the right Kriging technique if a researcher knows how to 
observe stationarity.

3.4. The cross-validation

The cross-validation (CV) is a set of techniques ap-
plied for estimation error calculation. Here the mean 
square error (MSE) technique is selected as one of the 
most applied in comparison to several interpolations for 
the same dataset. As a measure of residuals variance, it 
usually means that a lower MSE would lead to a conclu-
sion of better interpolation. There are also some other 
measures, like mean absolute error (MAE, the average 
of the absolute difference between measured and esti-
mated values, i.e. residuals average), root mean square 
error (RMSE, keeping the same unit as input dataset, al-
lowing easier interpretation), etc.

The MSE is an iterative procedure where one, ran-
domly selected, measured value is ignored and at the 
same location its value is again estimated (with selected 
interpolation method) from the rest of the measurements. 
The difference between those two values is the error in 
that point. The procedure is repeated for all other meas-
ured values and eventually the MSE is calculated using 
Equation 6 (e.g. Hodson, 2022):

	 � (6)

where:
MSE 	 – mean square error (of the estimation);
n 	 – number of data;
Ymeasured,i	– measured value for location “i”;
Yestimated,i	 – estimated value for location “i”.
However, the interpretation is not so straightforward, 

because the maps also can include different isolines 
shapes, where some forms (structures) could be almost 
impossible and could eliminate the interpolation method 
although the accompanied MSE is lower than in other 
methods.

4. Discussion and results overview

This research has been focused on zonal estimation as 
a useful addon to classical interpolation methods in the 
hydrocarbon sandstone reservoirs. The goal has been set 
up for the CPBS, where numerous interpolations of the 
mentioned and similar reservoirs had been published. 
The PR is selected as zonal estimation. The IDW and 
OK are the used interpolations. The datasets are divided 
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into small (19 data, Table 1) and large (25 data, Table 2) 
although both are of similar size.

Both sets are limited in their representation, but also 
solely publicly available for the analysed zones. The 
given values are mostly derived indirectly from e-logs, 
and this is why they are the same in numerous wells. 
They are very similar because they are logged in the 
same lithofacies. The values represent mean porosity 
along the entire reservoir in the corresponding well, 
which is often used in numerous mappings. However, 
some practitioners used porosities and pondered with 
other variables, for example, thickness. Such an option 
is not correct to apply if the researcher does not know 
(and describe) the depositional model, i.e. how clastics 
volume and sizes depend on (well) position in such an 
environment and subsequent compaction. As we did not 
have such detailed information, the pure mean porosity 
has been mapped.

Listed data had been interpolated or estimated using 
IDW, OK and PR. Table 3 presents the cross-validation 
values obtained by changing the value of the maximum 
total order (MTO). The selected MTO (as one hyperpa-
rameter related on the order of a fitting function) values 
are 1, 2, 3, 4, 5, and 10. They determine the maximum 
sum of the exponents of the independent (X) and (de-
pendent) Y variables, i.e. the degree of polynomial re-
gression, ensuring that the sum of the exponents does 
not exceed the MTO value (Draper & Smith, 1981). 
For example, for “n” data, the maximum degree of poly-
nomial function and MTO is “n-1”. Like it was men-
tioned for the order of the polynomial function, choosing 

an excessively high MTO value may lead to over-fitting, 
which causes situations where the data or predictions 
have significant errors or variations, which makes them 
unreliable (Wan, 2019). In contrast, a low value of MTO 
may result in under-fitting of the model, leading to fail-
ure in representing the relationship between the varia-
bles (Araújo, 2018). For all cases, the MSE is calculated 
and maps are generated. Regarding the PR, there were 
several options to estimate data changing the option 
named as “Max Total Order (MTO)”. In this analysis, 
such an option is varied with values 1, 2, 3, 4, 5 and 10, 
looking at the lowest MSE (see Table 3).

When MTO reached 2, the MSE stayed constant (and 
overall, the variations are too small). So, this parameter 
can be considered of low importance, when the thresh-
old of 2 is reached, for the used datasets regarding their 
abundance and locations. The next step was calculation 
of the same error using the IDW and OK interpolations 
in the same reservoirs (see Table 4).

In both reservoirs, the MSE values are considerably 
lower for interpolations than for the estimator (see Ta-
bles 3 and 4). In the reservoir with more data, those val-
ues are lower, which indicated statistically representa-
tive datasets, i.e. the fact that an increase in values did 
not include new “outlier” values and confirmed that both 

Table 2. Porosity data for reservoir „L“

Name Surface X Surface Y Porosity
L-111a 6417747.87 5027750.49 0.239
L-131a 6416846.88 5028084.13 0.156
L-136a 6416153.34 5028514.94 0.145
L-140 6415085.08 5028332.44 0.192
L-142 6415018.82 5028518.52 0.186
L-153 6416755.00 5028207.72 0.239
L-155 6416966.63 5028205.04 0.156
L-156 6415912.39 5028017.76 0.206
L-160 6416409.59 5028202.77 0.197
L-161 6416945.81 5028414.75 0.156
L-27 6416655.05 5028085.51 0.197
L-32 6417390.44 5027719.99 0.239
L-33a 6415763.30 5028687.46 0.214
L-33b 6415763.30 5028687.46 0.214
L-37 6415833.62 5028477.16 0.214
L-4a 6415435.16 5028753.52 0.214
L-5 6417199.92 5027939.22 0.239
L-57 6415945.52 5028103.82 0.206
L-62 6416090.56 5028354.65 0.206
L-65a 6415235.15 5028589.8 0.214
L-66 6415579.42 5028511.51 0.214
L-68 6415314.5 5028205.63 0.214
L-73 6414912.05 5028679.32 0.192
L-79 6414821.26 5028401.83 0.195
L-87a 6416346.64 5028297.46 0.197

Table 1. Porosity data for reservoir „K“

Name Surface X Surface Y Porosity
J-101 6421096.00 5028877.00 0.217
J-120 6420658.00 5029068.00 0.272
J-161 6420957.00 5028870.00 0.217
J-162 6421034.00 5028593.00 0.217
J-167 6420529.00 5028674.00 0.217
J-168 6420699.00 5028475.00 0.315
J-169 6420349.00 5028825.00 0.217
J-170 6420349.00 5028926.00 0.223
J-174 6421298.00 5028863.00 0.217
J-175 6420475.00 5029136.00 0.223
J-158 6420303.00 5028910.00 0.223
J-171 6420576.00 5028970.00 0.223
J-172 6420928.00 5029147.00 0.223
J-102 6421208.00 5028926.00 0.217
J-148 6421126.00 5028437.00 0.217
J-149 6420959.00 5028501.00 0.217
J-166 6420771.00 5028650.00 0.217
J-25 6420546.00 5028460.00 0.315
J-173 6420539.00 5028382.00 0.217
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datasets are representative. Also, the lowest MSE for 
OK proved that 25 data points were enough for the cal-
culation of a reliable spatial model (variogram) based 
(probably, because it is not tested) on the normal distri-
bution of porosity (as theoretical assumption for sand-
stone reservoirs).

The maps made for both datasets using the PR zonal 
estimator are shown on Figure 5 left (reservoir “K”) and 
Figure 5 right (reservoir “L”). The main difference is, 
as in the MSE, in the maps associated with MTO=1 and 
the maps with MTO>1. As zonal, the maps show sharp 
borders between different porosity zones and all follow 
the NW-SE/WNW-ESE strike, which corresponds with 
the strike of a sandstone depositional environment. For 
reservoir “K”, the zone values (colours) are almost the 
same for the MTO=2, 3 and 10, which follows the stabi-
lisation of the MSE on the MTO=2 and higher. For res-
ervoir “L”, almost the same statement is valid, also with 
additional features reflected in the “parabolic” borders 
among zones. Also, the PR is sensitive on higher differ-

Table 4. The MSE values for the IDW and OK compared 
with PR, for the reservoirs “K” and “L”

MSE
Reservoirs Data IDW OK PR

“K” 19 0.000119 / 0.054010
“L” 25 / 0.000676 0.040117

Table 3. The MSE values for the PR porosity estimation with variable MTO values, for the reservoirs „K“ and „L“

POROSITY OF RESERVOIR “K” POROSITY OF RESERVOIR “L”
DATA MTO MSE Data MTO MSE

19 1 0.054007 25 1 0.041100
19 2 0.054010 25 2 0.040117
19 3 0.054010 25 3 0.040117
19 4 0.054010 25 4 0.040117
19 5 0.054010 25 5 0.040117
19 10 0.054010 25 10 0.040117

Figure 5. The PR porosity maps with different MTO values 
(fitting sum of orders for X and Y at 1 on upper and 2 on lower 
map) for the reservoir “K” (left) and the reservoir “L” (right).
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Figure 6. The IDW porosity map for reservoir “K” (top) and the OK porosity map for reservoir “L” (bottom)

ences between close data, which is visible in well pairs 
J-168 and J-25, i.e. L-27 and L-131a. In any case, when 
the data are classified mostly in several groups of the 
same values (see Tables 1 and 2) the zonal estimator will 
group them clear and simple.

The interpolated maps are given on Figure 6 top (res-
ervoir “K”, the IDW) and Figure 6 bottom (reservoir 
“L”, the OK). As expected, the interpolators are based 
on transitional zones between isoporosity lines on the 
selected equidistance. So, the spatial interpretation and 
prediction is much easier than in the zonal representa-

tion, however, it can be tricky when numerous points are 
of the same values, like in the presented reservoirs (see 
Tables 1 and 2). The main difference is the existence of 
the maximums and minimums, which on the zonal maps 
were amalgamated into a single zone. Back to MSE, it 
would be a more appropriate spatial solution than zones.

Application of the OK asked for the definition of a 
spatial model, which was not an easy task due to the 
relatively low amount of data. This is why the omnidi-
rectional variogram model had been used (for direction-
al there would not be enough data per sectors of the 
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searching ellipsoid). Some theoretical variogram models 
(see Figure 7) had been tested like linear (range about 
900 m) and spherical (range about 350 m) with relative-
ly small changes in visual results and MSE. So, we pre-
fer to use models with lower ranges. Also, the Kriged 
map used larger equidistance (0.02) than the IDW (0.01) 
just to be sure that a different spatial model will not sig-
nificantly change the shapes of the main “structures”. It 
was not influenced by the MSE calculation.

5. Conclusions

The main achievements can be summarised as fol-
lows:

1.  Zonal estimators and interpolators are two differ-
ent approaches for subsurface sandstone mapping, both 
with their own properties and advantages.

2.  Larger datasets will favour interpolators, smaller 
datasets favour estimators.

3.  Here it is proven that both datasets can be interpo-
lated with the IDW (19 data, “K”, 0.000119) and even 
using the OK (25 data, “L”, 0.000676), and in both cases 
the MSE will be significantly lower than in the estima-
tion with the PR (0.054010 in “K” and 0.040117 in “L”).

4.  However, both datasets are very specific, meaning 
that many values are the same, which practically de-
creased the number of different data from 19 or 25 to 
only several classes. In such a case pure interpolation 
will not be so useful, because almost all grid cells are not 
confirmed with the measured value, i.e. hard data, but 
are artificially calculated from an interpolation algo-
rithm.

5.  Such a disadvantage is the result of the way that 
data are calculated, where they are indirectly averaged 
from a mixture of well logs and cores in the sandstone 
reservoir intervals across the field.

Figure 7. Examples of some tested theoretical variogram models (linear - left, spherical - right)

6.  Alternatively, their interpretation could be im-
proved with simultaneously running a zonal estimator 
algorithm, where the mentioned value classes could be 
easily recognised inside zones, revealing their area and 
strike (see Figure 5a, b).

7.  Zonal estimation enhances reservoir development 
when depositional models are well-defined, like in the 
presented sandstone reservoirs or their counterparts in 
other regions of the CPBS.
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SAŽETAK

Usporedba rezultata interpolacije polinomnom regresijom te onih inverznom 
udaljenošću i običnim krigiranjem; primjer neogenskih pješčenjaka u Savskoj 
depresiji, Hrvatska

Analizirana su dva skupa podataka šupljikavosti. Oni su prostorno prikazani polinomnom regresijom, skr. PR (zonalna 
procjena), inverznom udaljenošću, skr. IU, i običnim krigiranjem, skr. OK (interpolacije). Podatci su prikupljeni iz 
pješčenjačkih ležišta „K” (19 točaka) i „L” (25 točaka), donjopontske starosti, smještenih u Savskoj depresiji u Hrvatskoj. 
Karte su uspoređene rezultatima krosvalidacije (srednjom kvadratnom pogrješkom, skr. SKP) te vizualnom usporedbom 
glavnih oblika linija izoporoznosti. Obrađeni skupovi podataka razmatrani su kao mali (ležište „K”) i veliki (ležište „L”). 
Za ležište „K” SKP iznosi 0,000119 (IU) nasuprot 0,05401 (PR). U ležištu „L” SKP je iznosio 0,000676 (OK) nasuprot 
0,040117 (PR). Zonalna procjena nije se pokazala primarnim izborom za kartiranje takvih skupova od 20-ak podataka. 
Nasuprot njoj, linearni interpolatori (IU i OK) predstavljaju mnogo razumniji odabir, posebno ako se može modelirati 
pouzdan prostorni model temeljen na normalnoj razdiobi analizirane varijable (šupljikavosti). U takvim slučajevima 
preferira se tehnika OK. Zonalna procjena može se smatrati uporabljivim dodatkom interpretaciji ležišta, posebno u 
onim dijelovima gdje je rješenje manje pouzdano, npr. u prijelaznim zonama.

Ključne riječi: 
pješčenjačka ležišta, šupljikavost, zonalna procjena, interpolacija, Savska depresija, Hrvatska
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