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Abstract
Stope instability remains a persistent and hazardous challenge in underground mining, impacting safety, efficiency, and 
sustainability. Traditional stability assessment methods, while valuable, are often limited by site-specific calibration, 
simplifications, and adaptability issues in dynamic underground conditions. While machine learning shows potential 
for improved accuracy, a critical gap persists in understanding how geotechnical factors interact in practice. This study 
introduces a novel, practical machine learning framework (Scikit-Learn) to predict stope instability, and crucially, to 
quantify the nuanced, non-linear influence and interaction of critical geotechnical factors in a shallow gold mine. Com-
prehensive geotechnical investigation (observations, lab tests, rock mass classifications, blast damage assessments) and 
advanced data analysis (Random Forest feature importance, RFE, decision boundary analysis) identified water ingress, 
blast-induced damage, and rock mass quality (RMR) as the most significant instability factors. Water ingress profoundly 
impacted stability, with moderate blast damage exacerbating instability under high water ingress. Rock strength showed 
comparatively lower significance. The developed model achieved robust predictive performance (accuracy: 0.83, preci-
sion: 0.88, recall: 0.83, F1-score: 0.83). Based on these insights, tailored support patterns (e.g. 22mm/16mm cone bolts, 
timber props) are proposed to mitigate specific risks. This research significantly advances targeted rock mechanics solu-
tions by providing a deeper, quantifiable understanding of complex instability mechanisms, enhancing mine safety and 
operational efficiency in shallow gold mining.
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1. Introduction

Stope instability remains a critical issue in under-
ground mining, directly impacting both safety and pro-
duction efficiency. The stability of a stope is intrinsically 
linked to the mechanical properties of the surrounding 
rock mass. Rock strength parameters, including uniaxial 
compressive strength (UCS), tensile strength, and shear 
strength, are fundamental in determining the potential 
for failure (Cai, 2016; Alzoubi et al., 2009). Specifical-
ly, UCS plays a critical role in defining overall stability 
and supporting requirements for stopes (Li et al., 2019; 
Madzivire et al., 2018). In situ and induced stress fields 
significantly influence stope stability, with the relative 
orientation of stopes to these stress fields being a crucial 
factor (Karimzadeh et al., 2020; Mortazavi et al., 

2018; Jaouhari et al., 2017). Rock mass classification 
systems, such as the Rock Tunneling Quality Index (Q) 
and the Rock Mass Rating (RMR), provide quantitative 
measures of rock mass quality and facilitate the predic-
tion of potential failure mechanisms (Brown et al., 
2015; Lato et al., 2015; Smith et al., 2007; Cai et al., 
2004; Hoek et al., 1997). Additionally, the Rock Quality 
Designation (RQD) of the rock mass surrounding a stope 
is a critical indicator of its stability, with lower RQD val-
ues signifying a more fractured and jointed rock mass 
(Bai et al., 2022; Karimzadeh et al., 2020).

Water ingress and water logging can severely com-
promise stope stability by reducing the effective cohe-
sion and friction angle of the rock mass and increasing 
effective stresses on stope walls (Wang et al., 2019; 
Joughin et al., 2012; Potvin et al., 2001). Additionally, 
blast-induced damage, characterized by physical and 
structural alterations in the rock mass, contributes sig-
nificantly to instability. While blasting is essential for 
hard rock mining, it can result in overbreak, slabbing, 
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and peripheral damage (Smith et al., 2018). Optimizing 
blasting practices to minimize damage and dilution is 
crucial for maintaining stope stability.

Excavation stability in underground mining is influ-
enced by a complex interaction of geological and opera-
tional factors. While open stope mining enhances pro-
ductivity and reduces worker exposure to hazardous 
environments, it also introduces risks such as overbreak- 
where unstable rock displaces beyond the planned exca-
vation boundary, often due to weak or unfavourably ori-
ented hangingwalls (Li et al. 2023; Capes, 2009). Such 
occurrences increase operational costs, disrupt produc-
tion, and compromise safety. The main contributors to 
instability include stress relaxation, which alters rock 
mass behaviour (Jorquera et al. 2023; Diederichs and 
Kaiser, 1999), as well as mining techniques, extraction 
rates, rock strength, geological features, and stope di-
mensions.

Faults, which represent fractures in the Earth’s crust 
with relative movement along their planes, are another 
critical consideration. Their orientation, movement type, 
and associated stress regimes significantly affect sur-
rounding rock stability (Szmigiel et al. 2024; Zhou et 
al., 2022). Furthermore, the management of post-mining 
voids - commonly addressed through backfilling with 
materials like cemented rock fill or paste backfill (Skr-
zypkowski, 2021a, 2021b; Lingga and Apel, 2018) is 
essential to maintain long-term ground integrity. It is 
also vital to consider the influence of adjacent stopes, as 
stress redistribution from neighbouring excavations can 
pose significant stability challenges (Vinay et al. 2023). 
Proper control of excavation edges through methods 
such as controlled blasting and the application of sup-
port systems is necessary to minimize overbreak and en-
sure design compliance.

Classical methods for assessing stope stability have 
long served as foundational tools in underground min-
ing, offering critical insight into rock mass behaviour. 
These traditional approaches, grounded in empirical for-
mulas and extensive field and laboratory data, have been 
instrumental in evaluating excavation stability. Among 
these, the stability graph method developed by Mathews 
et al. (1981) stands out for its widespread use. This tech-
nique integrates rock mass classification systems, such 
as the Q system by Barton et al. (1974) and the Rock 
Mass Rating (RMR) system by Bieniawski (1973) and 
incorporates key adjustment factor such as rock stress 
(A), joint orientation (B), and surface orientation (C) to 
compute the stability number (N), a key parameter for 
stope design and support.

Machine learning techniques have emerged as power-
ful tools for predicting stope instability by analyzing 
complex datasets and identifying non-linear relation-
ships between geotechnical parameters. Algorithms such 
as Random Forest and Support Vector Machines (SVMs) 
have been successfully applied to predict stope instabil-
ity from various geotechnical inputs (Li et al. 2023; Vi-

nay et al. 2023; Bui et al., 2020; Pham et al., 2017). 
These techniques can handle large datasets and identify 
patterns that are often obscured by traditional statistical 
methods. While these classical approaches remain rele-
vant, the advent of machine learning has introduced 
powerful new tools for assessing stope stability (Szmi-
giel et al. 2024; Jorquera et al. 2023; Qi et al. 2018). 
For instance, a study by Adoko et al. (2022) demon-
strated the application of feed-forward neural network 
classifiers, achieving a 91% prediction accuracy using a 
dataset of 225 stope cases from three Ghanian mines. 
This highlights the potential of machine learning in cap-
turing complex interdependencies among the many vari-
ables influencing stability.

Traditional empirical and analytical methods, while 
foundational, often face limitations such as dependency 
on site-specific calibration, inherent simplifications of 
complex rock mass behaviour, and a lack of adaptability 
to dynamic underground conditions. For example, the 
Stability Graph Method by Mathews et al. (1981) pro-
vides a robust framework but relies on simplified adjust-
ment factors that may not fully capture the nuanced in-
teractions of multiple geotechnical parameters in highly 
variable rock masses. Numerical simulations offer de-
tailed insight into stress distribution and deformation, 
but they are computationally intensive, require extensive 
input data, and often involve significant simplification of 
geological structures. Conversely, machine learning 
models, particularly those leveraging Scikit-Learn, offer 
distinct advantages. They can process large, heterogene-
ous datasets, identify non-linear relationships without 
explicit mechanistic models, and adapt to diverse geo-
logical settings with appropriate training data. Their 
ability to learn complex patterns directly from data 
makes them particularly suitable for problems like stope 
instability prediction where multiple interacting factors 
are at play. This study aims to showcase the practical 
value of integrating such advanced data-driven tech-
niques into mine design and operational decision-mak-
ing, leading to enhanced safety, reduced operational 
costs, and improved resource utilization in the mining 
sector.

Building on this, this study aims to investigate the 
geotechnical factors influencing stope instability in the 
2North Section of a gold mine using machine learning 
techniques. By leveraging these advanced analytical 
methods, this research seeks to develop a predictive 
model that accurately forecasts stope instability, contrib-
uting to improved safety and productivity. The integra-
tion of machine learning with traditional geotechnical 
analysis offers a comprehensive understanding of stope 
instability, enabling the development of effective rock 
mechanics solutions. By incorporating parameters such 
as rock mechanical properties, blast damage, rock mass 
quality, and water effects, we aim to improve prediction 
performance and deepen our understanding of the criti-
cal factors affecting stope stability.
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2. Materials and Methods

2.1. �Geology and Mining Overview  
of the Study Area

The mine exploits auriferous sulfide mineralization 
within shear zones hosted by the Archaean Iron Mask 

Figure 1. Simplified geological map of the Zimbabwe Craton, 
showing major lithological units. Adapted from Blenkinsop 

et al. (1999).

Figure 2. Regional geological map of the Zimbabwe Craton 
highlighting the Harare-Bindura-Shamva Greenstone Belt. 
The red rectangle indicates the approximate location of the 
greenstone belt. Adapted from Blenkinsop et al. (1999).

Figure 3. Detailed map illustrating 
significant structures  

within the Harare-Bindura-Shamva 
Greenstone Belt. Adapted from 

Blenkinsop et al. (1999).

Formation, located in the Harare-Bindura-Shamva 
greenstone belt of the Zimbabwe Craton (>2.5 Ga) 
(Blenkinsop et al., 1999). The Iron Mask Formation 
consists of metamorphosed felsic volcanics (dacite, me-
ta-andesite, meta-rhyolite), with gold mineralization pri-
marily associated with arsenopyrite, pyrrhotite, and py-
rite. The ore zones, averaging 1m in width and 3.7 g/t 
Au, dip variably (10°-70°, mean 40°). The mine utilizes 
sublevel stoping with random pillar support. Stope di-
mensions range from 1-3m wide and 10-30m high. De-
tailed discontinuity mapping and rock mass characteri-
zation are essential, considering the lithological variabil-
ity of the Iron Mask Formation and its impact on rock 
mass strength and deformation. Notably, a period of 
stope flooding, followed by resumed mining without a 
documented geotechnical assessment, necessitates a 
thorough evaluation of potential water-induced instabil-
ity. This includes assessing water pressure effects on 
joint strength and potential pore pressure development.

The regional geological setting of the Zimbabwe Cra-
ton, highlighting its major lithological units, is illustrat-
ed in Figure 1.

The Harare-Bindura-Shamva Greenstone Belt, a sig-
nificant mineralized zone within the Zimbabwe Craton, 
is delineated by a red rectangle on the regional geologi-
cal map shown in Figure 2.

Detailed mapping within the Harare-Bindura-Shamva 
Greenstone Belt has revealed several significant geolog-
ical structures that control mineralization. These key 
structures are presented in Figure 3. For instance, the 
major shear zones are evident.

2.2. Rock Strength Determination

Circular cylindrical core samples were prepared for 
uni-axial and tri-axial tests from areas under study. The 
samples were cut to 1150mm size using a diamond saw. 
For the Brazilian tensile strength test, samples were cut to 
16mm length, and all specimens were given identity num-
bers. The samples were supplied for laboratory testing.
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2.3. Rock Mass Classification

The ground water conditions, discontinuity direction, 
thickness, infill type, joint set number, spacing, rough-
ness, and other geotechnical characteristics impacting 
rock mass performance at certain places were measured 
and documented in the study. Field estimates were used 
to estimate the strength of the rock, and data from uni-
axial compressive strength (UCS) tests was added. The 
joint frequency approach suggested by Palstrom (1982) 
was utilized to determine the RQD rating because the 
drill core was not available. The volumetric joint count, 
Jv, was first calculated using the joint spacing per inter-
val as stated in Equation 1.

	 � (1)

where joint sets 1, 2, and 3 are represented by J1, J2, and 
J3 respectively.

Additionally, information was gathered in compli-
ance with the RMR system of rock mass classification 
specifications (Bieniawski, 1989).

2.4. Evaluation of Stope Stability

Stability graphs, originally introduced by Mathews 
et al. (1981), are among the most widely adopted em-
pirical methods for evaluating stope stability in under-
ground mining. This approach was developed using es-
tablished rock mass classification systems, notably the 
Q-system by Barton et al. (1974) and the Rock Mass 
Rating (RMR) system by Bieniawski (1973). The 
Mathews stability graph focuses on identifying the main 
factors that influence rock mass stability through spe-
cially designed charts that correlate various rock mass 
properties. These charts incorporate parameters such as 
the rock stress factor (A), joint orientation adjustment 
factor (B), modified rock tunneling index (Q’) and sur-
face orientation factor (C). These factors are used col-
lectively to compute the stability number (N’), a signifi-
cant metric in the design of stope dimensions and sup-
port systems. The stability number serves as a quantitative 
measure of the rock mass conditions and stope stability 
and is determined using the relationship in Equation 2.

	 � (2)

The Mathews’ stability graph method proposed by 
Mathews et al., (1981) was used to evaluate the stope 
stability of the stopes. The average of the Q-system data 
generated for every stope was used to calculate the Q’ 
value. Potvin factor analysis was performed at each 
stope’s specific places where the RMR Q-system had 
been concluded. The modified stability number N’ of 
each and every stope was computed using the modal 
Potvin factor values, as well as their respective hydraulic 
radii. The stope dimensions, thus width and height were 
measured using a distometer so as to determine the hy-
draulic radii of the stopes. These values were used to 

determine the stope stability on the stability graph and 
the maximum tolerable unsupported length. For each 
stope under investigation, the modified stability number 
N’ and the hydraulic radius was determined using Eqau-
tion 2.

A vital element in the accurate assessment of stope 
stability is the shape factor, commonly known as the hy-
draulic radius (HR), which links the geometric dimen-
sions of the opening. The hydraulic radius is a major 
parameter that characterizes the shape of the stope and 
plays a significant role in determining its structural sta-
bility. It is typically defined as the ratio of the area of the 
exposed hanging wall to its perimeter. In the case of in-
clined stopes - where the excavation is not perfectly ver-
tical - the hanging wall exposure becomes the most im-
portant consideration for calculating the HR. The HR 
calculation incorporates the stope’s span along both the 
dip (h) and strike (w) directions (Tishkov, 2018) as 
shown in Equation 3.

	 � (3)

2.5. Assessment of Blast Damage

The measuring tools Peak Particle Velocity (PPV) and 
Half Cast Factor were employed to evaluate blast dam-
age. Vibration sensors were installed at strategic loca-
tions to measure the PPV generated by the blast. PPV 
values were recorded at each sensor location during the 
blast event. The PPV was determined using the formula 
proposed by Singh (1994) in Equation 4.

	 � (4)

where Vmax is the PPV, from an explosive charge, Q, at 
a known distance R.

The half cast factors (Equation 5) were calculated by 
measuring the length of half cast barrels in the desig-
nated areas that remained after the blast:

	 Half Cast Factor = 

	 = � (5)

2.6. Data Analysis

The collected data from field investigations, labora-
tory experiments, and an extensive literature review 
were subjected to systematic analysis using a combina-
tion of established geotechnical and empirical tech-
niques. Rock strength parameters were evaluated through 
both uniaxial compressive and triaxial compressive 
strength tests to determine the mechanical behaviour of 
the intact rock under varying stress conditions. Rock 
mass quality was assessed using the RQD and RMR 
classification systems, providing insight into the struc-
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tural integrity and geomechanical characteristics of the 
rock mass. Stope stability was analyzed utilizing the 
Mathews’ stability graph method, an empirical tool that 
relates rock mass conditions, geometry, and support re-
quirements to the potential for stable excavation. Blast-
induced damage was assessed by analyzing PPV data 
and the Half Cast Factor, both of which are indicators of 
blast performance and fragmentation control. This mul-
tifaceted analytical approach ensured a comprehensive 
understanding of the subsurface conditions and their im-
plications for excavation and support design.

2.7. Factor Analysis

Machine learning techniques were applied to analyze 
the dataset, encompassing processes such as feature se-
lection, feature importance evaluation, and decision 
boundary visualization. The analysis was conducted us-
ing Scikit-learn, a widely adopted machine learning li-
brary in Python, on a dataset integrating geological, geo-
technical, and mining-related parameters. Feature selec-
tion was carried out using mutual information and 
recursive feature elimination (RFE) to identify the most 
relevant variables contributing to model performance 
and predictive accuracy. Feature importance was as-
sessed using the Random Forest Classifier, which pro-
vided insight into the relative significance of each input 
variable in the classification tasks. To visualize model 
behaviour and class separation, decision boundary plots 
were generated using Support Vector Machines (SVMs). 
Additionally, feature distribution plots were employed 
to explore the distribution and potential interactions 

among variables. To further understand the interrelation-
ships among geotechnical factors, correlation coeffi-
cients were computed and analyzed. Figure 4 summa-
rizes the whole factor analysis process.

2.7.1. Feature Importance Analysis

As previously described, the Random Forest Classi-
fier was used for feature importance analysis. The core 
of the Random Forest lies in the aggregation of multiple 
decision trees. Each tree Ͳj in the forest \T1,T2,…, Tm} is 
built on a bootstrap sample of the training data and con-
siders a random subset of features at each split. The pre-
diction of the forest for a given input x is often based on 
the majority vote of its individual decision trees. This 
ensemble prediction, ŷ(x), can be expressed as shown in 
Equation 6:

	 � (6)

Where ŷ(x) is the final predicted output of the Random 
Forest model, mode denotes the statistical mode, which 
is the value that appears most frequently, Tj(x) is the pre-
diction of the jth individual decision tree for a given input 
x and j is the total number of trees in the Random Forest.

The importance of a feature Xk is quantified by ob-
serving how much the prediction accuracy (or impurity) 
decreases when that feature is randomly permuted. A 
feature is considered important if its permutation leads 
to a significant drop in model performance. The impor-
tance score I(Xk) for a feature Xk can be expressed as 
shown in Equation 7:

Figure 4. Workflow Diagram of the Machine Learning Process for Stope Instability Prediction
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	 � (7)

where ej is the out-of-bag (OOB) error for tree Tj and 
 is the OOB error of Ͳj after the values of feature Xk 

have been randomly permuted. The OOB error is calcu-
lated on the data points not used to train that specific 
tree. Categorical variables (water effect and blast dam-
age) were encoded using ordinal encoding, and numeri-
cal features (RQD, Rock Strength, Rock Mass Rating) 
were standardized using the z-score as shown in Equa-
tion 8:
	 � (8)

where zi is the standardized value of the ith data point, xi 
is the original value of the ith data point, µx is the mean of 
the feature X and σx is the standard deviation of the fea-
ture X.

The z-score: ensures that the variance across features 
is comparable, which can be important for distance-
based algorithms (though Random Forest is less sensi-
tive to feature scaling).

2.7.2. Recursive Feature Elimination Analysis

Recursive Feature Elimination (RFE) is a feature se-
lection technique that recursively removes the least im-
portant features until a specified number of features is 
reached. The process can be described as follows:

1. � Train a model on the entire set of features and cal-
culate the importance of each feature.

2. � Remove the least important feature(s) based on a 
predefined criterion.

3. � Repeat steps 1-2 until the desired number of fea-
tures is reached.

The importance of each feature in the Recursive Fea-
ture Elimination (RFE) process was calculated using 
Equation 9:
	 � (9)

where I(Xk) is the importance of feature Xk and is the wx 
weight assigned to feature Xk in the model.

The RFE process can be mathematically represented 
by Equation 10:

	 � (10)

where RFE(D, K) is the set of K features selected from 
the original dataset D.

2.7.3. Decision Boundary Analysis

Decision boundary plots were generated using the 
Random Forest Classifier to visualize the classifier’s 
predictions across the feature space of the two most sig-
nificant factors: water effect and blast damage. The deci-
sion boundary Ɓ for separating the feature space into 

regions corresponding to different class predictions is 
defined as shown in Equation 11:

	 � (11)

where x is a vector of the ‘Water Effect’ and ‘Blast Dam-
age’ features (after encoding), d is the dimensionality of 
this subspace (here, d=2),Rd I the Euclidean space and c 
is the class boundary (e.g. the point where the probabil-
ity of ‘Stable’ equals the probability of ‘Unstable’). For 
probabilistic classifiers like Random Forest (which can 
output class probabilities), the decision boundary can be 
defined at a specific probability threshold (e.g. 0.5).

2.7.4. Data Distribution Analysis

Feature distribution plots were used to visualize the 
distributions of individual geotechnical factors and the re-
lationships between pairs of factors. The relationships be-
tween pairs of variables were explored using joint proba-
bility distributions and the Pearson correlation coefficient 
– The Pearson correlation coefficient, r, between two vari-
ables X and Y is defined as shown in Equation 12:

	 � (12)

where E is the expectation operator, µx is the mean of 
variable X, µx is the mean of variable Y, σx is the standard 
deviation of variable X and σy the standard deviation of 
variable Y.

2.7.5. Correlation Coefficient Analysis

Correlation coefficient results were used to determine 
linear relationships among the geotechnical factors, spe-
cifically focusing on the correlation between water effect, 
blast damage, and rock quality (represented by RQD and 
Q). The t-statistic for assessing the significance of a cor-
relation coefficient is given by Equation 13:

	 � (13)

where n is the number of data points, t is the t-statistic 
value, r is the Pearson correlation coefficient and n is the 
number of data points.

The resulting p-value indicates the probability of ob-
serving such a correlation if there were no true linear 
relationship between the variables.

2.7.6. Model Evaluation

The performance of the Random Forest Classifier was 
evaluated using standard classification metrics, includ-
ing accuracy, precision, recall, and F1-score. For the 
‘Unstable’ class:

The overall accuracy of the model, precision, recall 
and F1-score was calculated as shown in Equation 14, 
15, 16 and 17.
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	 � (14)

	 � (15)

	 � (16)

	 � (17)

To ensure the model’s robustness, 5-fold cross-valida-
tion was performed. The dataset was divided into 5 
folds, and the model was trained and evaluated 5 times, 
each time using a different fold as the validation set. The 
average performance across the folds provided a more 
reliable estimate of the model’s generalization ability. 
The average metric across K folds in cross-validation 
was computed using Equation 18:

	 � (18)

where K is the number of folds used in cross-validation, 
Metrici is the value of the evaluation metric on the ith 
validation fold.

ROC Curve for Logistic Regression

Furthermore, the ROC curve used was to evaluate the 
performance of a logistic regression model. The Receiv-
er Operating Characteristic (ROC) curve is a graphical 
representation of the performance of a binary classifier. 
It plots the True Positive Rate (TPR) against the False 
Positive Rate (FPR) at different thresholds.

The TPR and FPR can be calculated using Equation 
19 and 20:

	 � (19)

	 � (20)

where TP is the number of true positives, FN is the num-
ber of false negatives, FP is the number of false posi-
tives, and TN is the number of true negatives.

The area under the ROC curve (AUC) was calculated 
using Equation 21 to quantify the overall performance 
of a logistic regression model.

	 � (21)

The AUC value ranges from 0 to 1, where 1 represents 
perfect classification and 0.5 represents random guessing.

The logistic regression model can be represented 
mathematically as shown in Equation 22:

	 � (22)

where P(Y=1|X) is the probability of the positive class 
given the input features X, and z is a linear combination 
of the input features (see Equation 23):

	 � (23)

Where wi are the weights assigned to each feature Xi.

3. Data Analysis

This study evaluates the stability of underground 
mine stopes in the 2North Section by examining the ef-
fects of rock mechanical properties, blast-induced dam-
age, rock mass quality, and water presence. A combined 
approach involving laboratory tests, field observations, 
empirical classification systems, and machine learning 
methods was employed to provide an integrated assess-
ment of stope stability and support design requirements.

3.1. Rock Mechanical Properties

The mechanical properties of intact rock are funda-
mental in assessing the overall stability and deformation 
behaviour of underground excavations. In this study, lab-
oratory tests were conducted on representative rock sam-
ples to determine key strength parameters, including Uni-
axial Compressive Strength (UCS), Triaxial Compressive 
Strength (TCS), and tensile strength, providing insight 
into the inherent competence of the rock materials.

The UCS results demonstrated a relatively wide but 
consistently high strength range, with values spanning 
from 167 MPa in the ore zone to 215 MPa in the grano-
diorite unit (see Table 1). These values clearly classify 
both lithologies as strong to very strong rocks based on 
standard rock strength classification systems (ISRM). 
Such high compressive strengths imply that, under un-
confined loading conditions, the intact rock is unlikely to 
fail or undergo significant deformation, even when sub-
jected to the stresses typically encountered in under-
ground mining environments.

Table 1. Summary of Rock Mechanical Properties

Rock Type UCS TCS Tensile Strength
Metabasalt 172 NA NA
Metaandesite 175 NA NA
Granodiorite 215 NA 12.2
Ore zone 167 93.2 11.6

Note: Triaxial Compressive Strength Test was only done on 
the ore zone and the Tensile Strength Test only on granodiorite 
and the ore zone.

Further testing on ore zone samples revealed a TCS of 
93.2 MPa, which, while lower than the UCS, reflects the 
increased confinement typical of in-situ conditions and 
demonstrates the material’s capacity to sustain stress un-



A. Bemo, D. Olatunji Shonuga, T. Zvarivadza et al.� 186

Rudarsko-geološko-naftni zbornik 2025, 40 (5), pp. 179-198, https://doi.org/10.17794/rgn.2025.5.14

der triaxial loading. This value is within the expected 
range for strong, brittle rock and supports the conclusion 
that the ore body itself, when intact, is mechanically 
robust.

The tensile strength values were also notably high, 
with the ore zone recording 11.6 MPa and granodiorite 
slightly higher at 12.2 MPa. Tensile strength is critical in 
determining the rock’s resistance to crack initiation and 
propagation, especially in the presence of blast vibrations 
or stress redistributions. These values suggest that the in-
tact rock would not readily fracture under tensile loading, 
further reinforcing its competent mechanical nature.

However, despite these strong intact rock properties, 
field observations and empirical assessments indicate in-
stability in certain stopes. This discrepancy points to a 
key understanding in rock mechanics: while laboratory 
strength data provides valuable baseline information, 
rock mass behaviour in situ is dominantly controlled by 
discontinuities (such as faults, joints, fractures, and bed-
ding planes) rather than the properties of the intact rock 
alone (Li et al. 2023; Vinay et al. 2023). The presence 
of geological discontinuities can dramatically reduce the 
effective strength of the rock mass, acting as planes of 
weakness along which shear displacement, dilation, or 
separation may occur. This is particularly relevant in 
jointed or faulted ground, where intact rock strength be-
comes a secondary consideration (Qi et al. 2018). As a 
result, the rock mass strength is governed not only by the 

intact strength but also by the orientation, persistence, 
spacing, and surface conditions of these discontinuities.

In the context of the studied stopes, it is reasonable to 
conclude that failure mechanisms are likely driven by 
structural weaknesses rather than by the degradation of 
the intact rock. This assertion is supported by other find-
ings in the study, such as moderate to high levels of frac-
turing (as evidenced by RQD values) and elevated blast-
induced damage (high PPV values). These factors col-
lectively reduce the overall rock mass quality and 
increase the likelihood of instability, despite the high 
laboratory-derived strength values.

3.2. Blast Damage Assessment

Blasting is an essential component of underground 
mining, enabling efficient rock breakage and extraction. 
However, improper blast design or execution can result 
in excessive damage to the surrounding rock mass, com-
promising excavation stability. One of the most reliable 
indicators of blast-induced damage is PPV - a dynamic 
measurement of the vibration intensity caused by explo-
sive charges.

In this study, PPV values recorded during stope devel-
opment ranged from 229.5 mm/s to 3335 mm/s (see Fig-
ure 4). This considerable variation in PPV reveals incon-
sistent control over blast energy dissipation, with values at 
the higher end far exceeding typical thresholds associated 
with safe excavation practices. According to various em-

Figure 5. PPV versus  
Specific Charge  
for 1.5m Charge Length

Figure 6. Half-Cast Factor 
Measurements for Different 
Stope Ends
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pirical guidelines and case studies, PPV values exceeding 
1000 mm/s are often associated with severe stress redistri-
bution, overbreak, and long-term deterioration of rock 
mass properties, particularly in jointed or fractured 
ground. The observed upper range of 3335 mm/s is there-
fore indicative of substantial blast-induced stress and po-
tential rock mass degradation in affected areas.

Further compounding this issue is the mean half-cast 
factor, a metric used to evaluate the effectiveness of pe-
rimeter control blasting. In this case, the half-cast factor 
was calculated at only 4.92% (see Figure 6) - a value 
considerably lower than the acceptable range for well-
controlled blasting. The half-cast factor essentially re-
flects the proportion of blast holes that produce smooth, 
half-round impressions on the final excavation perime-
ter. Low percentages indicate poor energy confinement, 
excessive rock spalling, and a lack of controlled fractur-
ing at the boundary, leading to unintended overbreak and 
increased wall damage.

The combination of high PPV values and a low half-
cast factor strongly suggests that blast damage is a sig-
nificant contributor to the deterioration of stope walls, 
beyond what might be explained solely by geological 
factors such as naturally blocky ground or fault struc-
tures. While the presence of pre-existing discontinuities 
undoubtedly plays a role in how energy is transmitted 
and fractures propagate, the primary mechanism of in-
stability in this case appears to be anthropogenic - spe-
cifically, suboptimal blasting practices.

It is also important to note that high PPV values have 
a cumulative effect on the rock mass, especially in zones 
with repeated blasting cycles. Damage induced by vibra-
tion may not be immediately visible but can manifest 
over time as gradual loosening, slabbing, or rockfall. In 
addition, blast-induced microcracks reduce the rock’s 
elastic modulus and shear strength, thereby lowering the 
overall stability of the excavation even in the absence of 
visible failures.

3.3. Rock Mass Classification

The quality of the rock mass was evaluated using the 
RQD and the Q-system, both of which are widely accept-
ed empirical classification methods in geotechnical engi-
neering. These assessments provided quantitative meas-
ures of the rock mass integrity and structural competence. 
The results of this analysis are presented in Table 2.

3.3.1. Evaluation of Rock Mass Quality Using RQD

The Rock Quality Designation (RQD) serves as a key 
indicator of the degree of fracturing within a rock mass 
and is widely used in empirical rock mass classification 
systems, including the Q-system. In this study, RQD val-
ues were assessed across four stopes to evaluate the in-
tegrity, continuity, and competence of the rock mass, all 
of which are critical factors for ensuring the stability of 
underground excavations.

The results indicate that Stopes 2A and 3C exhibited 
RQD values of 73% and 70% respectively, which clas-
sify them as moderately fractured rock masses, as shown 
in Table 2. These values suggest the presence of fre-
quent jointing and discontinuities, which can compro-
mise the structural behaviour of the stope walls and 
roofs, making them more susceptible to instability and 
overbreak. The moderate RQD values in these stopes are 
symptomatic of less competent rock that may require ad-
ditional support measures to ensure safe stope develop-
ment and long-term excavation performance.

The lower RQD values observed in Stopes 2A and 3C 
can be attributed to a combination of blast-induced dam-
age and hydrogeological effects. Excessive blasting, es-
pecially in poorly controlled rounds, can create new 
fractures and extend existing ones, thereby deteriorating 
the surrounding rock mass. Moreover, elevated water 
pressure within joints and fractures can further degrade 
rock quality by reducing effective stress and contribut-
ing to joint dilation and weakening. These factors act 
synergistically to exacerbate pre-existing geological 
weaknesses, leading to the observed reduction in RQD.

In contrast, Stope 2B recorded a significantly higher 
RQD, indicating improved rock mass quality and re-
duced fracture density. This suggests a more intact and 
cohesive rock structure, which enhances load-bearing 
capacity and decreases the likelihood of shear or tensile 
failure along joint planes. As such, Stope 2B is expected 
to exhibit better performance in terms of ground control, 
reduced support requirements, and lower risk of over-
break. Notably, Stope 2B exhibited the highest RQD at 
90%, denoting a very competent and unfractured rock 
mass. Such high values are indicative of minimal dis-
continuities, with long, continuous core pieces recov-
ered during drilling, reflecting superior geological con-
ditions. This degree of rock mass integrity is typically 
associated with enhanced stope stability, increased safe-
ty, and more cost-effective excavation due to lower sup-
port demands.

This interpretation is further supported by field obser-
vations and geotechnical logs, which noted signs of wa-
ter ingress and irregular fracture patterns in these stopes. 
The presence of water not only promotes mechanical 
deterioration but can also lead to chemical alteration of 
joint infill, compounding the loss in structural cohesion. 
As a result, the stope stability in these areas is compro-
mised, and targeted mitigation strategies (such as im-
proved blast control, pre-drainage techniques, and local-
ized support installation) may be necessary.

Table 2. Summary of the rock classification results

Stope RMR RQD Q Q’ Comment
2A 61 73 3.8 6 Good 
3C 66 70 4.9 8 Good 
2B 83 90 16.9 19 Very good
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3.3.2. �Evaluation of the Rock Mass Quality  
Using the Q-system

In this study, the Q-system analysis yielded distinct 
variations across the analyzed stopes, revealing signifi-
cant differences in rock mass conditions and their impli-
cations for stope stability. Stope 2B recorded the highest 
Q-value of 16.9, categorizing it as a good quality rock 
mass, as shown in Table 2. This high value is primarily 
attributed to favourable geological conditions, specifi-
cally the absence of groundwater and the presence of 
clean, clay-free joint infill. The lack of water is particu-
larly significant, as water acts as a destabilizing agent by 
reducing effective stress, lubricating joint surfaces, and 
weakening rock-bridging elements. Moreover, clay-free 
joints contribute to better interlocking and higher shear 
resistance, both of which are essential for maintaining 
the structural integrity of excavated openings.

The elevated Q-value for Stope 2B directly correlates 
with its observed stability and larger tolerable unsup-
ported span, suggesting that it may require minimal 
ground support, thereby offering potential cost and op-
erational efficiency advantages during mining opera-
tions. These findings underscore the importance of dry 
conditions and joint cleanliness as critical contributors 
to excavation stability.

In contrast, Stopes 2A and 3C exhibited significantly 
lower Q-values of 3.8 and 4.9, respectively, placing them 
in the fair to poor rock quality category. These values 
reflect moderate stability conditions that warrant more 
conservative excavation designs and likely necessitate 
reinforced support systems. A key factor influencing the 
reduced Q-values in these stopes is the presence of 
groundwater, which adversely affects several Q-system 
parameters. Water reduces the Jw factor, indicating wet 
or saturated conditions, and contributes to the alteration 
of joint infill materials, thereby decreasing the Ja and po-
tentially increasing joint activity and deformation risk. In 
such environments, joints are more likely to become crit-

ically stressed, leading to increased dilation, rock block 
detachment, and potential stope wall instability.

Interestingly, Stope 3C displayed a slightly higher Q-
value than Stope 2A, which can be attributed to its high-
er joint friction, represented by a greater Jr value. Joint 
roughness enhances mechanical interlocking between 
rock blocks, providing increased resistance to shear fail-
ure even in the presence of water or other weakening 
agents. This factor offers marginally better performance 
in Stope 3C, although not sufficient to significantly alter 
its classification within the Q-system. The influence of 
joint friction also highlights the multifactorial nature of 
rock mass behaviour, where improvements in one pa-
rameter may partially offset deficiencies in others.

Overall, the Q-system analysis provided quantitative 
insight into the geomechanical performance of the vari-
ous stopes. The results emphasize that Stope 2B offers a 
more stable mining environment, while Stopes 2A and 
3C require additional engineering interventions. These 
findings reinforce the value of the Q-system in pre-min-
ing assessments and its ability to guide risk-informed 
stope design, ground support selection, and excavation 
sequencing in underground mining operations

3.3.3. �Use of the Q results to evaluate stope 
stability

The maximum tolerable unsupported span, derived 
using the Q-system empirical design method, serves as a 
critical parameter in assessing the relative stability of 
underground stopes. This span refers to the largest exca-
vation width that can be safely maintained without the 
use of additional ground support, based on the rock mass 
quality and structural conditions. It is directly influenced 
by the Q-value, which integrates key factors such as 
RQD, joint set number, joint roughness, groundwater 
conditions, joint alteration, and stress reduction due to 
excavation geometry.

In the context of this study, Stope 2B exhibited the 
highest tolerable unsupported span, reflecting its supe-
rior rock mass conditions and overall stability, as shown 
in Table 3. This result is consistent with its higher Q-
value and RQD, which indicate a competent rock mass 
with fewer fractures, clean joint surfaces, and minimal 
water ingress. The ability of Stope 2B to support a larger 
span without reinforcement suggests that the rock mass 
is well-interlocked and capable of withstanding the in-
duced stresses from mining without immediate risk of 
collapse or significant deformation.

Table 3. Maximum tolerable unsupported length  
of the stopes

Stope ESR Q Maximum tolerable 
unsupported length(m)

Stope 2A 1.6 3.8 5.5
Stope 3C 1.6 4.9 6.0
Stope 2B 1.6 16.9 9.9

Table 4. The calculated Modified Stability Number and Hydraulic radius

STOPE DIMENSIONS POTVIN FACTORS STABLE STOPE SPAN

Stope Joint Orientation
º

Width(w)
m

Height(h)
m A B C Q’ N Hydraulic Radius

2A 45 31 37 1 0.5 6 6 13.5 8.43
3C 30 36 40 1 0.2 6 8 15.2 9.47
2B 30 29 35 1 0.2 6 19 26.2 7.93
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In contrast, Stopes 2A and 3C demonstrated consider-
ably lower maximum unsupported spans, signaling re-
duced stability and a higher probability of requiring arti-
ficial support systems. These stopes also recorded lower 
RQD values (73% and 70%, respectively), indicating 
more intense fracturing and possibly blast-induced dam-
age or degradation due to groundwater pressure. The re-
duced span capacity in these areas implies that the rock 
mass cannot reliably sustain large openings, as disconti-
nuities such as joints, fissures, and weakened zones may 
serve as planes of failure, especially under the influence 
of gravity and mining-induced stress changes.

The strong correlation between RQD and the calcu-
lated unsupported spans emphasizes the significance of 
rock mass fragmentation and structural integrity in stope 
design. RQD, as a measure of the degree of fracturing in 
the core samples, directly impacts the overall Q-value 
and, subsequently, the recommended excavation span. 
This highlights the necessity of accurate geotechnical 
logging and sampling in the early stages of mine design 
to ensure safe and efficient stope development.

Furthermore, the variation in span tolerances among 
the stopes suggests that site-specific ground control strate-
gies are essential, rather than relying on a generalized de-
sign approach. While Stope 2B may safely accommodate 
wider openings, Stopes 2A and 3C would benefit from 
narrower spans or the implementation of support systems 
such as cable bolts, mesh, or shotcrete to mitigate the risk 
of overbreak and ensure worker safety.

3.4. Stope Stability Assessment

To assess the stability of the evaluated stopes, the 
modified stability number (Q′) and hydraulic radius 
were calculated, as summarized in Table 4. These pa-
rameters are central to the Mathews Stability Graph 
method, where the stability number (Q′) incorporates 
key rock mass quality factors such as joint condition, 
groundwater influence, and joint orientation, while the 
hydraulic radius reflects the geometry of the excavation.

Among the analyzed stopes, Stope 2B demonstrated the 
highest Q′ value, indicating the most favourable rock mass 
conditions overall. Interestingly, this high stability number 
was maintained despite a relatively low joint orientation 
factor (B). This suggests that the inherent rock quality (re-
flected in parameters like intact rock strength, joint spac-
ing, and absence of water) played a dominant role in pro-
moting stability. In other words, while unfavourable joint 
orientation typically reduces stability, the overall robust-
ness of the rock mass in Stope 2B was sufficient to offset 
the negative influence of joint orientation. This finding 
highlights the complex interplay between geological and 
structural factors in influencing excavation performance, 
where strong, dry, and tightly interlocked rock masses can 
compensate for less-than-ideal joint alignments.

However, the analysis also reveals a critical point re-
garding the mechanism of potential failure. In stopes 
with lower Q′ values and less favourable geometrical or 

structural conditions, such as 2A and 3C, failure is likely 
to initiate along joints that intersect the free face at small 
angles. These low-angle joints act as potential sliding 
surfaces, especially when oriented sub-parallel to the ex-
cavation walls or roof. Such orientations reduce the 
shear resistance along the joint planes, particularly when 
combined with stress relief from excavation or the pres-
ence of water, which can lower effective stress and lubri-
cate joint surfaces. This failure mechanism is consistent 
with observed overbreak patterns in similar mining set-
tings and underscores the importance of joint orientation 
analysis in ground control planning.

Furthermore, the relationship between Q′ and HR on 
the Mathews Stability Graph places these stopes within 
the potentially unstable region, suggesting that while 
outright failure may not be imminent, there is an elevat-
ed risk that warrants attention. In practice, this means 
that additional support measures or modifications to 
stope dimensions may be required to maintain stability, 
particularly in areas where joint geometry and excava-
tion layout intersect unfavourably.

3.4.1. Mathews Stability Graph

The results derived from the Mathews Stability Graph 
(see Figure 7) reveal that all analyzed stopes plot within 
the “potentially unstable” zone of the graph. This zone, 
positioned between the empirically defined stable and 
failed regions, represents a range of hydraulic radius and 
stability number (N) combinations where stope perfor-
mance is highly sensitive to local geological, structural, 
and operational conditions. It indicates that the analyzed 
stopes, while not necessarily prone to immediate failure, 
exhibit a heightened risk of instability and would likely 
require additional support measures or design modifica-
tions to maintain structural integrity.

Among the evaluated stopes, Stope 2B demonstrates 
the highest relative stability, as indicated by its location 
within the potentially unstable zone at a higher Stability 

Figure 7. Stop Stability Results on Mathews’ stability graph
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Number (N), positioning it closer to the stable region. 
This observation is supported by its comparatively higher 
Q-value, which reflects more favourable rock mass con-
ditions, and a greater RQD, suggesting a higher degree of 
intact rock within the core samples. The Q-value, which 
incorporates factors such as joint set number, joint rough-
ness, joint alteration, and groundwater conditions, plays 
a direct role in the computation of the stability number 
(N). A higher Q-value in Stope 2B therefore results in a 
higher N, shifting its plot point further to the right on the 
stability graph and indicating improved stability.

This trend validates the underlying empirical relation-
ships embedded in the Mathews Stability Graph method. 

The graphical output aligns well with the field data and 
quantitative input parameters, especially in the case of 
Stope 2B, where the correlation between good rock mass 
quality and predicted stability is clearly evident. Howev-
er, the fact that all stopes fall within the potentially unsta-
ble region (even those with moderate to high rock quality) 
emphasizes the critical role of stope geometry, particular-
ly the hydraulic radius, in influencing stability outcomes.

3.5. Machine Learning Analysis Using Scikit-Learn

Machine learning analysis was conducted using the 
Scikit-learn library, a robust and widely adopted frame-

Figure 8. Feature importance scores obtained from the Random Forest Classifier

Figure 9. The Recursive 
Feature Elimination (RFE) 
process
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work in Python for building and evaluating machine 
learning models. The workflow began with data preproc-
essing, which involved handling missing values, encod-
ing categorical variables, and scaling features to ensure 
uniformity across the dataset. Following preprocessing, 
the dataset was split into training and testing subsets to 
facilitate fair model evaluation and eliminate overfitting. 
Model evaluation metrics including accuracy, precision, 
recall, F1-score, were calculated to compare algorithm 
performance and select the most effective model for the 
task. Visual tools such as confusion matrices and ROC 
curves were used to interpret classification results.

3.5.1. Feature Importance Analysis

To understand the relative influence of various geo-
technical factors on stope instability, the Random Forest 
Classifier from the Scikit-Learn library was employed to 
perform feature importance analysis. The choice of Ran-
dom Forest was motivated by its ability to handle both 
categorical and numerical data, its robustness against 
overfitting, and its capacity to provide feature impor-
tance scores based on the mean decrease in impurity.

Prior to model training, categorical variables (water 
effect and blast damage) were encoded using ordinal en-
coding, assigning numerical values representing the se-
verity levels (e.g. low=0, medium=1, high=2). Numeri-
cal features (RQD, Rock Strength, RMR) were standard-
ized using Scikit-Learn’s StandardScaler to ensure 
consistent scaling.

The feature importance scores, as visualized in Fig-
ure 8, revealed that water effect was the most influential 
factor in predicting stope instability, followed by blast 
damage and RMR. RQD and Rock Strength exhibited 

comparatively lower importance. This suggests that the 
presence of water and the extent of blast damage signifi-
cantly contribute to instability, potentially by exacerbat-
ing existing discontinuities and reducing the effective 
strength of the rock mass.

It is important to note that the feature importance 
scores are relative and should be interpreted within the 
context of the dataset. While Rock Strength showed low 
importance, it does not imply it’s entirely negligible; 
rather, its variability within the dataset might be less in-
fluential compared to other factors.

3.5.2. Recursive Feature Elimination Analysis

The Recursive Feature Elimination (RFE) process 
was used to evaluate the importance of each feature in 
predicting stope stability (see Figure 9). The results 
showed that water effect, blast damage, and RMR were 
consistently ranked as the top features, indicating their 
high importance in predicting stope stability. When these 
features were removed from the model, the performance 
dropped significantly, further confirming their impor-
tance. The RFE analysis provided further insight into the 
relationships between the geotechnical factors and stope 
instability, and supported the findings of the feature im-
portance analysis.

3.5.3. Decision Boundary Analysis

To further explore the interaction between the two 
most significant factors, water effect and blast damage, 
we performed a decision boundary analysis. This tech-
nique visualizes the classifier’s predictions across the 
feature space, illustrating how different combinations of 
water effect and blast damage influence stope stability.

Figure 10. Water Effect against blast Damage Decision Boundary Plot
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Figure 11. Feature distribution plots for the five factors under investigation

Figure 12. Correlation 
Heatmap

Figure 10 shows the decision boundary generated by 
the Random Forest Classifier. The yellow area repre-
sents the region where the model predicted “Stable” 
stope conditions, while the purple area represents “Un-
stable” conditions.

The analysis revealed that:

Water effect is a dominant predictor: when water 
effect is low (0) or medium (1), the classifier predicts 
“Stable” regardless of blast damage severity. This sug-
gests that in the absence of significant water influence, 
even high levels of blast-induced damage are unlikely to 
compromise stope stability.
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High water effect increases instability risk: when 
water effect is high (2), the classifier predicts “Unstable” 
for medium (1) and high (2) blast damage levels. This 
indicates that elevated water influence substantially in-
creases the risk of instability, particularly when com-
bined with blast damage.

Interaction effect: the decision boundary analysis 
underscores a strong interaction between water effect 
and blast damage. Specifically, a high-water effect am-
plifies the destabilizing impact of blast damage, pointing 
to a compounded influence on stope stability.

3.5.4. Data Distribution Analysis

Feature distribution plots (see Figure 11) reveal a 
positive correlation between rock strength and RMR, in-
dicating that higher-strength rocks are generally associ-
ated with better rock mass quality. Additionally, a posi-
tive correlation was observed between water effect and 
blast damage, suggesting that the presence of water may 
exacerbate the extent of blast-induced damage. This dis-
tribution analysis is critical for understanding the inter-

relationships among geotechnical factors and plays a 
vital role in informing the design of appropriate ground 
support systems.

3.5.5. Correlation Coefficient Analysis

The correlation coefficient analysis shows a strong 
negative linear relationship between water effect and 
rock quality, and a moderate negative linear relationship 
between blast damage and rock quality (see Figure 12). 
This suggests that the presence of water is associated 
with a decrease in rock quality, and that blast damage is 
also associated with a decrease in rock quality. The cor-
relation coefficient analysis is essential in understanding 
the relationships between the factors and designing ap-
propriate support systems.

3.5.6. �Model Evaluation  
and Limitations

The performance of the Random Forest Classifier was 
evaluated by using multiple metrics, achieving an accu-
racy of 0.83, precision of 0.88, recall of 0.83, and an 
F1-score of 0.83, as illustrated in Figure 13. To assess 
the model’s robustness and its ability to generalize to 
unseen data, a 5-fold cross-validation procedure was 
conducted. In this process, the dataset was randomly 
partitioned into five equal subsets; in each iteration, four 
subsets were used for training and the remaining one for 
testing, ensuring that each subset served as the test set 
exactly once. The performance metrics averaged across 
the five folds were consistent with those obtained from 
the initial model evaluation. This consistency indicates 
that the model does not suffer from overfitting and dem-
onstrates reliable generalization capability. Such valida-
tion strengthens confidence in the model’s predictive Figure 13. Classification report extract

Figure 14. Receiver 
Operating Characteristic 
(ROC) Curve for Logistic 

Regression
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reliability when applied to new or unseen geotechnical 
datasets.

It is important to acknowledge several limitations as-
sociated with this analysis. First, the dataset used for 
training the machine learning model was relatively lim-
ited in size, which may constrain the model’s ability to 
fully capture the underlying complexity and non-linear 
interactions among geotechnical features. This limita-
tion could affect both the generalizability and robustness 
of the predictive outcomes. Second, while categorical 
encoding was employed to represent variables such as 
water effect and blast damage, this approach simplifies 
the inherently complex and continuous nature of these 
factors. Although effective for initial modelling purpos-
es, such simplification may lead to a loss of nuanced in-
formation. Future research could benefit from the use of 
more advanced encoding methods, such as ordinal en-
coding, one-hot encoding with domain-specific thresh-
olds, or even continuous variable modelling, to better 
reflect the true variability and interactions of these pa-
rameters.

Furthermore, the data used in this study were collect-
ed exclusively from the 2North Section of the mine. As 
a result, the model’s applicability may be limited to this 
specific geological and operational context, and its pre-
dictions may not be directly transferable to other sec-
tions of the mine with differing geotechnical or hydro-
logical conditions. To enhance the model’s predictive 
power and generalizability, future studies should con-
sider expanding the dataset, incorporating additional 
features such as joint orientation, stress regime, or time-
dependent effects, and applying the model across multi-
ple zones of the mine. These improvements would allow 
for a more comprehensive assessment of stope stability 
and broader applicability of the model outcomes.

Figure 14 displays the Receiver Operating Character-
istic (ROC) curve for the trained Logistic Regression 
model. The ROC curve plots the true positive rate (sen-
sitivity) against the false positive rate (1 - specificity) at 
various classification thresholds. The Area Under the 
Curve (AUC) provides a single scalar value summariz-
ing the overall performance of the classifier for different 
classes. The AUC values for Class Potentially unstable, 
Class stable, and Class unstable are 0.545, 0.403, and 
0.729, respectively.

The ROC curve and AUC values provide insight into 
the model’s ability to balance true positives and false 
positives, which is crucial for practical applications in 
mining engineering. The results indicate that the model 
performs relatively well in predicting “unstable” stopes 
(AUC = 0.729), suggesting that it can effectively identi-
fy instances that are likely to be unstable. However, the 
model’s performance for “stable” stopes is poor (AUC = 
0.403), indicating that it struggles to distinguish between 
stable and other classes. The model’s performance for 
“potentially unstable” stopes is moderate (AUC = 
0.545), suggesting that it can identify some instances 
that are potentially unstable, but with limited accuracy.

The varying AUC values across classes suggest that 
the model may be biased towards certain classes or that 
the features used to train the model are not equally in-
formative for all classes. To improve the model’s perfor-
mance, it may be necessary to collect more data, particu-
larly for the classes with lower AUC values, or to ex-
plore alternative feature engineering strategies. 
Additionally, hyperparameter tuning or the use of en-
semble methods may help to improve the model’s over-
all performance.

4. Discussion

This study applied a machine learning approach to 
predict stope instability, building upon and contrasting 
with traditional empirical and analytical methods. While 
classical approaches like the Mathews Stability Graph 
(Mathews et al., 1981) and rock mass classification sys-
tems (Bieniawski, 1973; Barton et al., 1974) provide 
foundational insight, their inherent limitations often 
arise from their reliance on simplified parameters and 
site-specific calibrations. For instance, the stability 
graph method, while widely used, may not fully capture 
the complex, non-linear interactions between multiple 
geotechnical factors. Our findings, particularly the 
strong influence of water ingress and blast-induced dam-
age identified by the Random Forest model, underscore 
the need for models that can discern such intricate rela-
tionships more effectively than traditional empirical for-
mulas alone.

Previous studies, such as Adoko et al. (2022), have 
successfully demonstrated the application of neural net-
works for stope design, achieving high prediction accu-
racies. Similarly, Li et al. (2023) and Vinay et al. (2023) 
highlight the effectiveness of Random Forest and Sup-
port Vector Machines in predicting stope instability. The 
strength of our approach lies in its practical application 
of the Scikit-Learn library to a specific shallow gold 
mining environment, providing a granular analysis of 
feature importance that quantifies the relative impact of 
each geotechnical factor. While other studies may focus 
on broader datasets or different mining contexts, our 
work offers a tailored solution directly applicable to the 
identified challenges in the 2North Section.

A significant advantage of the machine learning ap-
proach over purely empirical methods is its capacity to 
handle large, heterogeneous datasets and identify subtle, 
non-linear patterns that might be overlooked by simpli-
fied models. For example, the decision boundary analysis 
clearly illustrated the amplifying effect of high water in-
gress on instability when combined with moderate blast 
damage – a synergistic interaction that empirical formu-
las might struggle to quantify precisely. This directly 
translates to practical benefits for end-users in the mining 
sector, enabling more proactive and precise interven-
tions. By accurately predicting high-risk areas, mine op-
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Table 6. The tributary area for rock fall conditions and the corresponding support spacing

Stope Support Unit Support Ressistance
kN

Support Demand
kN/m2

Tributary Area for rock falls
m2

Support Spacing
M

Stope 2A 22mm cone bolt 190 32 5.9 2.4
16mm cone bolt 100 32 3.1 1.8

Stope 3C 22mm cone bolt 190 33 5.8 2.4
16mm cone bolt 100 33 3.0 1.8

Stope 2B 80 19 4.2 2.1

Table 5. Fall out heights and support demand of the stopes 
under investigation

Stope Density
Kg/m3

Fall Out 
Height 

No.

Fall Out 
Height

m

Support 
Demand
kN/m2

Stope 2A 2700 1 1.17 31
2700 2 1.27 34
2700 3 1.21 32

Average 1.22 32
Stope 3C 2700 1 1.25 33

2700 2 1.29 34
2700 3 1.21 32

Average 1.25 33
Stope 2B 2700 1 0.77 20

2700 2 0.68 18
2700 3 0.72 19

Average 0.72 19

erators can optimize the deployment of support systems, 
leading to reduced material consumption, improved safe-
ty by minimizing exposure to unstable ground, and ulti-
mately, enhanced operational efficiency and mineral re-
serve optimization through reduced dilution and down-
time. This also extends to machinery maintenance, as a 
more stable ground reduces the risk of equipment dam-
age from rockfalls and ground movement.

However, this study also presents limitations. The 
relatively limited dataset size inherently restricts the 
model’s generalizability beyond the specific geological 
and operational context of the 2North Section. While the 
5-fold cross-validation indicated robust performance 
within this dataset, applying the model directly to other 
mine sections without further training or validation 
could yield inaccurate predictions. Furthermore, the use 
of categorical encoding for water effect and blast dam-
age, while practical, simplifies the continuous nature of 
these phenomena. Future research should explore larger, 
more diverse datasets and advanced encoding techniques 
(e.g. continuous variables or more granular ordinal 
scales) to enhance model robustness and transferability. 
Incorporating additional features such as joint orienta-
tion, in-situ stress regimes, and time-dependent effects 
would also further refine predictive accuracy, leading to 
more comprehensive ground control solutions.

4.1. Stope Failure Analysis

Rock falls with medium and high hazard intensity are 
dominating stopes 2A and 3C, indicating the failure of 
support systems. The support system consists of natural 
in-situ pillars left randomly in stopes, relying on the ex-
cellent rock mass quality of the stopes. The adopted sup-
port design from 2South Section, had a maximum toler-
able unsupported length of 7.5m which deviated from 
the calculated values. The maximum tolerable unsup-
ported length for stope 2A and 3C deviated negatively 
with a magnitude of 2.5m and 1.5m respectively. This 
entails the deterioration of the rock mass quality in these 
stopes. As the rock mass quality was altered, the stope 
shape factor became insignificant for the design thus the 
stope stability decreased. As a result, new support re-
quirements which may include artificial support are now 
necessary.

4.2. Support Demand and Pattern

The analysis of support demand and support pattern 
indicates that the proposed support configuration is ad-
equate for maintaining the stability of the stopes, as de-
tailed in Tables 5 and 6. The support demand was quan-
titatively estimated based on established rock mass clas-
sification systems (RMR and Q-system) and evaluated 
using the Mathews’ stability graph method, which inte-
grates rock quality, stope geometry, and excavation span 
to determine required support levels.

The proposed support pattern was designed to ensure 
an even distribution of load and to accommodate local-
ized stress concentrations, particularly around larger 
load-bearing pillars. This design approach considers 
both the mechanical properties of the rock mass and the 
empirical stability zones defined in the stability graph. 
The pattern aims to transfer and distribute loads effec-
tively, minimize deformation, and prevent progressive 
failure, thereby ensuring the long-term structural integ-
rity of the stopes under anticipated mining conditions.

The support demand was calculated using Equation 24.

	 � (24)

where ρ is the verage density of the overlying rock mass, 
g is the acceleration due to gravity and h is the Fall-out 
height.
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5. Conclusions

Stope instability remains a critical challenge in under-
ground mining, often leading to hazardous conditions, 
production delays, and financial losses. Traditional em-
pirical and numerical methods, while effective, are lim-
ited by site-specific constraints and require extensive 
calibration. This study presents a practical machine 
learning (ML) approach for predicting stope instability 
by analyzing the main geotechnical parameters. The fol-
lowing are the findings of this study:

a)	� the primary geotechnical factors influencing stope 
instability in the 2North Section of the mine are 
water effect, blast damage, and poor rock mass 
quality, with water effect being the most signifi-
cant factor.

b)	� stopes 2A and 3C have lower rock quality (RQD 
and Q-system values) compared to Stope 2B, indi-
cating higher potential for instability.

c)	� blast damage assessment revealed significant dam-
age to the remaining rock mass, with a lack of prop-
er perimeter control during blasting operations.

d)	� the analysis using the Scikit-Learn Machine 
Learning Library confirmed that water effect, blast 
damage, and RMRs are the most important factors 
affecting stope instability, while rock strength has 
the least influence.

e)	� the Random Forest Classifier demonstrated strong 
predictive performance, achieving an accuracy of 
0.83, precision of 0.88, recall of 0.83, and an F1-
score of 0.83. This performance was consistent 
across 5-fold cross-validation, indicating the mod-
el’s reliability and generalization capability.

f)	� the stopes are all situated in the potentially unsta-
ble zone on the stability graph, with Stope 2B be-
ing more stable than the other two.

g)	� the adopted support design from 2South Section 
has been considered insufficient due to changes in 
rock mass quality, necessitating new support re-
quirements for an effective ground support sys-
tem. The maximum tolerable unsupported lengths 
of the stopes had significantly reduced, stopes 2A 
by 29% and 3C by 21%.

h)	� the proposed machine learning approach offers a 
robust and practical tool for mine operators, al-
lowing for more accurate predictions of stope in-
stability, thus enabling optimized resource alloca-
tion for support systems and enhanced safety by 
reducing exposure to hazardous conditions.

i)	� future research should focus on expanding the 
dataset to include a wider range of geological and 
operational conditions from multiple mine sec-
tions, exploring continuous variable modeling for 
factors like water pressure and blast intensity, and 
incorporating additional parameters such as joint 
orientation and in-situ stress regimes to further en-

hance the model’s generalizability and predictive 
accuracy.

j)	� the current state of the ground welcomes the ap-
plication of additional mining techniques to im-
prove the stability of the stopes, thus providing a 
secure working environment for employees, and 
supervision.
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SAŽETAK

Održiv i praktičan pristup strojnom učenju  
pomoću Scikit-Learn baze za procjenu nestabilnosti čela radilišta:  
identifikacija ključnih geotehničkih čimbenika

Nestabilnost čela radilišta i dalje je stalan i opasan izazov u podzemnoj eksploataciji, s negativnim utjecajem na sigur-
nost, učinkovitost i održivost. Tradicionalne metode procjene stabilnosti, iako korisne, često su ograničene potrebom za 
baždarenjem na specifičnome lokalitetu, pojednostavnjivanjem i slabom prilagodljivošću u dinamičnim podzemnim 
uvjetima. Iako strojno učenje pokazuje potencijal za poboljšanu točnost, i dalje postoji velik nedostatak razumijevanja 
kako geotehnički čimbenici međusobno djeluju u praksi. Ovo istraživanje predstavlja novu, praktičnu okosnicu strojno-
ga učenja (Scikit-Learn) za procjenjivanje nestabilnosti čela radilišta te ključnoga kvantificiranja suptilnoga nelinearnog 
utjecaja i međudjelovanja ključnih geotehničkih čimbenika u plitkome rudniku zlata. Sveobuhvatno geotehničko ispiti-
vanje (opažanja, laboratorijska ispitivanja, klasifikacije stijenskih masa, procjene oštećenja uslijed miniranja) i napredna 
analiza podataka (Random Forest, Recursive Feature Elimination, Decision boundary analysis) identificirali su najvažnije 
čimbenike nestabilnosti: prodor vode, oštećenja uzrokovana miniranjem i kvalitetu stijenske mase (RMR). Prodor vode 
imao je velik utjecaj na stabilnost, pri čemu su umjerena oštećenja od miniranja dodatno pogoršavala nestabilnost u 
uvjetima visokoga prodora vode. Čvrstoća stijenske mase pokazala se relativno manje važnom. Razvijeni model postigao 
je snažnu prediktivnu učinkovitost (točnost: 0,83, preciznost: 0,88, odziv: 0,83, F1 mjera: 0,83). Na temelju tih znanja 
predloženi su prilagođeni oblici podgrade (npr. konusna sidra 22 mm / 16 mm, drvena podgrada) kako bi se ublažili 
specifični rizici. Ovo istraživanje znatno doprinosi ciljanom rješavanju problema u mehanici stijena pružajući dublje, 
kvantificirano razumijevanje složenih mehanizama nestabilnosti, čime se poboljšava sigurnost i operativna učinkovitost 
kod plitke eksploatacije zlata.

Ključne riječi: 
geotehnički čimbenici, nestabilnost čela radilišta, strojno učenje, klasifikacija stijenske mase, plitko rudarenje, podgrada
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