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Abstract

Stope instability remains a persistent and hazardous challenge in underground mining, impacting safety, efficiency, and
sustainability. Traditional stability assessment methods, while valuable, are often limited by site-specific calibration,
simplifications, and adaptability issues in dynamic underground conditions. While machine learning shows potential
for improved accuracy, a critical gap persists in understanding how geotechnical factors interact in practice. This study
introduces a novel, practical machine learning framework (Scikit-Learn) to predict stope instability, and crucially, to
quantify the nuanced, non-linear influence and interaction of critical geotechnical factors in a shallow gold mine. Com-
prehensive geotechnical investigation (observations, lab tests, rock mass classifications, blast damage assessments) and
advanced data analysis (Random Forest feature importance, RFE, decision boundary analysis) identified water ingress,
blast-induced damage, and rock mass quality (RMR) as the most significant instability factors. Water ingress profoundly
impacted stability, with moderate blast damage exacerbating instability under high water ingress. Rock strength showed
comparatively lower significance. The developed model achieved robust predictive performance (accuracy: 0.83, preci-
sion: 0.88, recall: 0.83, Fi-score: 0.83). Based on these insights, tailored support patterns (e.g. 22mm/16mm cone bolts,
timber props) are proposed to mitigate specific risks. This research significantly advances targeted rock mechanics solu-
tions by providing a deeper, quantifiable understanding of complex instability mechanisms, enhancing mine safety and

operational efficiency in shallow gold mining.
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1. Introduction

Stope instability remains a critical issue in under-
ground mining, directly impacting both safety and pro-
duction efficiency. The stability of a stope is intrinsically
linked to the mechanical properties of the surrounding
rock mass. Rock strength parameters, including uniaxial
compressive strength (UCS), tensile strength, and shear
strength, are fundamental in determining the potential
for failure (Cai, 2016; Alzoubi et al., 2009). Specifical-
ly, UCS plays a critical role in defining overall stability
and supporting requirements for stopes (Li et al., 2019;
Madzivire et al., 2018). /n situ and induced stress fields
significantly influence stope stability, with the relative
orientation of stopes to these stress fields being a crucial
factor (Karimzadeh et al., 2020; Mortazavi et al.,
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2018; Jaouhari et al., 2017). Rock mass classification
systems, such as the Rock Tunneling Quality Index (Q)
and the Rock Mass Rating (RMR), provide quantitative
measures of rock mass quality and facilitate the predic-
tion of potential failure mechanisms (Brown et al.,
2015; Lato et al., 2015; Smith et al., 2007; Cai et al.,
2004; Hoek et al., 1997). Additionally, the Rock Quality
Designation (RQD) of the rock mass surrounding a stope
is a critical indicator of its stability, with lower RQD val-
ues signifying a more fractured and jointed rock mass
(Bai et al., 2022; Karimzadeh et al., 2020).

Water ingress and water logging can severely com-
promise stope stability by reducing the effective cohe-
sion and friction angle of the rock mass and increasing
effective stresses on stope walls (Wang et al., 2019;
Joughin et al., 2012; Potvin et al., 2001). Additionally,
blast-induced damage, characterized by physical and
structural alterations in the rock mass, contributes sig-
nificantly to instability. While blasting is essential for
hard rock mining, it can result in overbreak, slabbing,
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and peripheral damage (Smith et al., 2018). Optimizing
blasting practices to minimize damage and dilution is
crucial for maintaining stope stability.

Excavation stability in underground mining is influ-
enced by a complex interaction of geological and opera-
tional factors. While open stope mining enhances pro-
ductivity and reduces worker exposure to hazardous
environments, it also introduces risks such as overbreak-
where unstable rock displaces beyond the planned exca-
vation boundary, often due to weak or unfavourably ori-
ented hangingwalls (Li et al. 2023; Capes, 2009). Such
occurrences increase operational costs, disrupt produc-
tion, and compromise safety. The main contributors to
instability include stress relaxation, which alters rock
mass behaviour (Jorquera et al. 2023; Diederichs and
Kaiser, 1999), as well as mining techniques, extraction
rates, rock strength, geological features, and stope di-
mensions.

Faults, which represent fractures in the Earth’s crust
with relative movement along their planes, are another
critical consideration. Their orientation, movement type,
and associated stress regimes significantly affect sur-
rounding rock stability (Szmigiel et al. 2024; Zhou et
al., 2022). Furthermore, the management of post-mining
voids - commonly addressed through backfilling with
materials like cemented rock fill or paste backfill (Skr-
zypkowski, 2021a, 2021b; Lingga and Apel, 2018) is
essential to maintain long-term ground integrity. It is
also vital to consider the influence of adjacent stopes, as
stress redistribution from neighbouring excavations can
pose significant stability challenges (Vinay et al. 2023).
Proper control of excavation edges through methods
such as controlled blasting and the application of sup-
port systems is necessary to minimize overbreak and en-
sure design compliance.

Classical methods for assessing stope stability have
long served as foundational tools in underground min-
ing, offering critical insight into rock mass behaviour.
These traditional approaches, grounded in empirical for-
mulas and extensive field and laboratory data, have been
instrumental in evaluating excavation stability. Among
these, the stability graph method developed by Mathews
et al. (1981) stands out for its widespread use. This tech-
nique integrates rock mass classification systems, such
as the Q system by Barton et al. (1974) and the Rock
Mass Rating (RMR) system by Bieniawski (1973) and
incorporates key adjustment factor such as rock stress
(A), joint orientation (B), and surface orientation (C) to
compute the stability number (N), a key parameter for
stope design and support.

Machine learning techniques have emerged as power-
ful tools for predicting stope instability by analyzing
complex datasets and identifying non-linear relation-
ships between geotechnical parameters. Algorithms such
as Random Forest and Support Vector Machines (SVMs)
have been successfully applied to predict stope instabil-
ity from various geotechnical inputs (Li et al. 2023; Vi-

nay et al. 2023; Bui et al., 2020; Pham et al., 2017).
These techniques can handle large datasets and identify
patterns that are often obscured by traditional statistical
methods. While these classical approaches remain rele-
vant, the advent of machine learning has introduced
powerful new tools for assessing stope stability (Szmi-
giel et al. 2024; Jorquera et al. 2023; Qi et al. 2018).
For instance, a study by Adoko et al. (2022) demon-
strated the application of feed-forward neural network
classifiers, achieving a 91% prediction accuracy using a
dataset of 225 stope cases from three Ghanian mines.
This highlights the potential of machine learning in cap-
turing complex interdependencies among the many vari-
ables influencing stability.

Traditional empirical and analytical methods, while
foundational, often face limitations such as dependency
on site-specific calibration, inherent simplifications of
complex rock mass behaviour, and a lack of adaptability
to dynamic underground conditions. For example, the
Stability Graph Method by Mathews et al. (1981) pro-
vides a robust framework but relies on simplified adjust-
ment factors that may not fully capture the nuanced in-
teractions of multiple geotechnical parameters in highly
variable rock masses. Numerical simulations offer de-
tailed insight into stress distribution and deformation,
but they are computationally intensive, require extensive
input data, and often involve significant simplification of
geological structures. Conversely, machine learning
models, particularly those leveraging Scikit-Learn, offer
distinct advantages. They can process large, heterogene-
ous datasets, identify non-linear relationships without
explicit mechanistic models, and adapt to diverse geo-
logical settings with appropriate training data. Their
ability to learn complex patterns directly from data
makes them particularly suitable for problems like stope
instability prediction where multiple interacting factors
are at play. This study aims to showcase the practical
value of integrating such advanced data-driven tech-
niques into mine design and operational decision-mak-
ing, leading to enhanced safety, reduced operational
costs, and improved resource utilization in the mining
sector.

Building on this, this study aims to investigate the
geotechnical factors influencing stope instability in the
2North Section of a gold mine using machine learning
techniques. By leveraging these advanced analytical
methods, this research seeks to develop a predictive
model that accurately forecasts stope instability, contrib-
uting to improved safety and productivity. The integra-
tion of machine learning with traditional geotechnical
analysis offers a comprehensive understanding of stope
instability, enabling the development of effective rock
mechanics solutions. By incorporating parameters such
as rock mechanical properties, blast damage, rock mass
quality, and water effects, we aim to improve prediction
performance and deepen our understanding of the criti-
cal factors affecting stope stability.
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2. Materials and Methods

2.1. Geology and Mining Overview
of the Study Area

The mine exploits auriferous sulfide mineralization
within shear zones hosted by the Archaean Iron Mask
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Figure 1. Simplified geological map of the Zimbabwe Craton,
showing major lithological units. Adapted from Blenkinsop

etal. (1999).
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Figure 2. Regional geological map of the Zimbabwe Craton
highlighting the Harare-Bindura-Shamva Greenstone Belt.

The red rectangle indicates the approximate location of the
greenstone belt. Adapted from Blenkinsop et al. (1999).

Formation, located in the Harare-Bindura-Shamva
greenstone belt of the Zimbabwe Craton (>2.5 Ga)
(Blenkinsop et al., 1999). The Iron Mask Formation
consists of metamorphosed felsic volcanics (dacite, me-
ta-andesite, meta-rhyolite), with gold mineralization pri-
marily associated with arsenopyrite, pyrrhotite, and py-
rite. The ore zones, averaging Im in width and 3.7 g/t
Au, dip variably (10°-70°, mean 40°). The mine utilizes
sublevel stoping with random pillar support. Stope di-
mensions range from 1-3m wide and 10-30m high. De-
tailed discontinuity mapping and rock mass characteri-
zation are essential, considering the lithological variabil-
ity of the Iron Mask Formation and its impact on rock
mass strength and deformation. Notably, a period of
stope flooding, followed by resumed mining without a
documented geotechnical assessment, necessitates a
thorough evaluation of potential water-induced instabil-
ity. This includes assessing water pressure effects on
joint strength and potential pore pressure development.

The regional geological setting of the Zimbabwe Cra-
ton, highlighting its major lithological units, is illustrat-
ed in Figure 1.

The Harare-Bindura-Shamva Greenstone Belt, a sig-
nificant mineralized zone within the Zimbabwe Craton,
is delineated by a red rectangle on the regional geologi-
cal map shown in Figure 2.

Detailed mapping within the Harare-Bindura-Shamva
Greenstone Belt has revealed several significant geolog-
ical structures that control mineralization. These key
structures are presented in Figure 3. For instance, the
major shear zones are evident.

2.2. Rock Strength Determination

Circular cylindrical core samples were prepared for
uni-axial and tri-axial tests from areas under study. The
samples were cut to 1150mm size using a diamond saw.
For the Brazilian tensile strength test, samples were cut to
16mm length, and all specimens were given identity num-
bers. The samples were supplied for laboratory testing.

Figure 3. Detailed map illustrating
significant structures

within the Harare-Bindura-Shamva
Greenstone Belt. Adapted from
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Rudarsko-geolosko-nafini zbornik 2025, 40 (5), pp. 179-198, https://doi.org/10.17794/rgn.2025.5.14



A. Bemo, D. Olatunji Shonuga, T. Zvarivadza et al.

182

2.3. Rock Mass Classification

The ground water conditions, discontinuity direction,
thickness, infill type, joint set number, spacing, rough-
ness, and other geotechnical characteristics impacting
rock mass performance at certain places were measured
and documented in the study. Field estimates were used
to estimate the strength of the rock, and data from uni-
axial compressive strength (UCS) tests was added. The
joint frequency approach suggested by Palstrom (1982)
was utilized to determine the RQD rating because the
drill core was not available. The volumetric joint count,
J, was first calculated using the joint spacing per inter-
val as stated in Equation 1.

J=—t—+— 1)

where joint sets 1, 2, and 3 are represented by J1, J2, and
J3 respectively.

Additionally, information was gathered in compli-
ance with the RMR system of rock mass classification
specifications (Bieniawski, 1989).

2.4. Evaluation of Stope Stability

Stability graphs, originally introduced by Mathews
et al. (1981), are among the most widely adopted em-
pirical methods for evaluating stope stability in under-
ground mining. This approach was developed using es-
tablished rock mass classification systems, notably the
Q-system by Barton et al. (1974) and the Rock Mass
Rating (RMR) system by Bieniawski (1973). The
Mathews stability graph focuses on identifying the main
factors that influence rock mass stability through spe-
cially designed charts that correlate various rock mass
properties. These charts incorporate parameters such as
the rock stress factor (A), joint orientation adjustment
factor (B), modified rock tunneling index (Q’) and sur-
face orientation factor (C). These factors are used col-
lectively to compute the stability number (N’), a signifi-
cant metric in the design of stope dimensions and sup-
portsystems. The stability number serves as a quantitative
measure of the rock mass conditions and stope stability
and is determined using the relationship in Equation 2.

N =0 4BC )

The Mathews’ stability graph method proposed by
Mathews et al., (1981) was used to evaluate the stope
stability of the stopes. The average of the Q-system data
generated for every stope was used to calculate the Q’
value. Potvin factor analysis was performed at each
stope’s specific places where the RMR Q-system had
been concluded. The modified stability number N’ of
each and every stope was computed using the modal
Potvin factor values, as well as their respective hydraulic
radii. The stope dimensions, thus width and height were
measured using a distometer so as to determine the hy-
draulic radii of the stopes. These values were used to

determine the stope stability on the stability graph and
the maximum tolerable unsupported length. For each
stope under investigation, the modified stability number
N’ and the hydraulic radius was determined using Eqau-
tion 2.

A vital element in the accurate assessment of stope
stability is the shape factor, commonly known as the hy-
draulic radius (HR), which links the geometric dimen-
sions of the opening. The hydraulic radius is a major
parameter that characterizes the shape of the stope and
plays a significant role in determining its structural sta-
bility. It is typically defined as the ratio of the area of the
exposed hanging wall to its perimeter. In the case of in-
clined stopes - where the excavation is not perfectly ver-
tical - the hanging wall exposure becomes the most im-
portant consideration for calculating the HR. The HR
calculation incorporates the stope’s span along both the
dip (h) and strike (w) directions (Tishkov, 2018) as
shown in Equation 3.

wh

Hydraulic Radius = ——
4 2(w+h)

)

2.5. Assessment of Blast Damage

The measuring tools Peak Particle Velocity (PPV) and
Half Cast Factor were employed to evaluate blast dam-
age. Vibration sensors were installed at strategic loca-
tions to measure the PPV generated by the blast. PPV
values were recorded at each sensor location during the
blast event. The PPV was determined using the formula
proposed by Singh (1994) in Equation 4.

=B
Vmax =K (%J 4)

where Vmax is the PPV, from an explosive charge, Q, at
a known distance R.

The half cast factors (Equation 5) were calculated by
measuring the length of half cast barrels in the desig-
nated areas that remained after the blast:

Half Cast Factor =
ZLengths of visible blastholes(after explosion)

©)

- ZLengths of perimeter blastholes (befor eexplosion)

2.6. Data Analysis

The collected data from field investigations, labora-
tory experiments, and an extensive literature review
were subjected to systematic analysis using a combina-
tion of established geotechnical and empirical tech-
niques. Rock strength parameters were evaluated through
both uniaxial compressive and triaxial compressive
strength tests to determine the mechanical behaviour of
the intact rock under varying stress conditions. Rock
mass quality was assessed using the RQD and RMR
classification systems, providing insight into the struc-
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Figure 4. Workflow Diagram of the Machine Learning Process for Stope Instability Prediction

tural integrity and geomechanical characteristics of the
rock mass. Stope stability was analyzed utilizing the
Mathews’ stability graph method, an empirical tool that
relates rock mass conditions, geometry, and support re-
quirements to the potential for stable excavation. Blast-
induced damage was assessed by analyzing PPV data
and the Half Cast Factor, both of which are indicators of
blast performance and fragmentation control. This mul-
tifaceted analytical approach ensured a comprehensive
understanding of the subsurface conditions and their im-
plications for excavation and support design.

2.7. Factor Analysis

Machine learning techniques were applied to analyze
the dataset, encompassing processes such as feature se-
lection, feature importance evaluation, and decision
boundary visualization. The analysis was conducted us-
ing Scikit-learn, a widely adopted machine learning li-
brary in Python, on a dataset integrating geological, geo-
technical, and mining-related parameters. Feature selec-
tion was carried out using mutual information and
recursive feature elimination (RFE) to identify the most
relevant variables contributing to model performance
and predictive accuracy. Feature importance was as-
sessed using the Random Forest Classifier, which pro-
vided insight into the relative significance of each input
variable in the classification tasks. To visualize model
behaviour and class separation, decision boundary plots
were generated using Support Vector Machines (SVMs).
Additionally, feature distribution plots were employed
to explore the distribution and potential interactions

among variables. To further understand the interrelation-
ships among geotechnical factors, correlation coeffi-
cients were computed and analyzed. Figure 4 summa-
rizes the whole factor analysis process.

2.7.1. Feature Importance Analysis

As previously described, the Random Forest Classi-
fier was used for feature importance analysis. The core
of the Random Forest lies in the aggregation of multiple
decision trees. Each tree T/ in the forest \7,T,..., T } is
built on a bootstrap sample of the training data and con-
siders a random subset of features at each split. The pre-
diction of the forest for a given input x is often based on
the majority vote of its individual decision trees. This
ensemble prediction, y(x), can be expressed as shown in
Equation 6:

y(x)=mode\{T, (x)\}}", (6)
Where y(x) is the final predicted output of the Random
Forest model, mode denotes the statistical mode, which
is the value that appears most frequently, Y}(x) is the pre-
diction of the j* individual decision tree for a given input
x and;j is the total number of trees in the Random Forest.

The importance of a feature X, is quantified by ob-
serving how much the prediction accuracy (or impurity)
decreases when that feature is randomly permuted. A
feature is considered important if its permutation leads
to a significant drop in model performance. The impor-
tance score /(X,) for a feature X, can be expressed as
shown in Equation 7:
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> (e, -er) ™

where e is the out-of-bag (OOB) error for tree T, and
¢ji is the OOB error of T’ after the values of feature X,
have been randomly permuted. The OOB error is calcu—
lated on the data points not used to train that specific
tree. Categorical variables (water effect and blast dam-
age) were encoded using ordinal encoding, and numeri-
cal features (RQD, Rock Strength, Rock Mass Rating)
were standardized using the z-score as shown in Equa-
tion 8:

7 =2 Hx (8)
GX

where z is the standardized value of the i" data point, x,
is the original value of the i data point, u_is the mean of
the feature X and o is the standard deviation of the fea-
ture X.

The z-score: ensures that the variance across features
is comparable, which can be important for distance-
based algorithms (though Random Forest is less sensi-
tive to feature scaling).

2.7.2. Recursive Feature Elimination Analysis

Recursive Feature Elimination (RFE) is a feature se-
lection technique that recursively removes the least im-
portant features until a specified number of features is
reached. The process can be described as follows:

1. Train a model on the entire set of features and cal-

culate the importance of each feature.

2. Remove the least important feature(s) based on a

predefined criterion.

3. Repeat steps 1-2 until the desired number of fea-

tures is reached.

The importance of each feature in the Recursive Fea-
ture Elimination (RFE) process was calculated using
Equation 9:

1(X,)=|w] ©)
where /(X)) is the importance of feature X and is the w_
weight assigned to feature X, in the model.

The RFE process can be mathematically represented
by Equation 10:

RFE(D,K)=X,,X,,... X (10)
where RFE(D, K) is the set of K features selected from
the original dataset D.

2.7.3. Decision Boundary Analysis

Decision boundary plots were generated using the
Random Forest Classifier to visualize the classifier’s
predictions across the feature space of the two most sig-
nificant factors: water effect and blast damage. The deci-
sion boundary B for separating the feature space into

regions corresponding to different class predictions is
defined as shown in Equation 11:

B=\{xeR'|f(x)=c} (11)

where x is a vector of the ‘Water Effect’ and ‘Blast Dam-
age’ features (after encoding), d is the dimensionality of
this subspace (here, d=2),R¢ I the Euclidean space and ¢
is the class boundary (e.g. the point where the probabil-
ity of ‘Stable’ equals the probability of ‘Unstable’). For
probabilistic classifiers like Random Forest (which can
output class probabilities), the decision boundary can be
defined at a specific probability threshold (e.g. 0.5).

2.7.4. Data Distribution Analysis

Feature distribution plots were used to visualize the
distributions of individual geotechnical factors and the re-
lationships between pairs of factors. The relationships be-
tween pairs of variables were explored using joint proba-
bility distributions and the Pearson correlation coefficient
— The Pearson correlation coefficient, r, between two vari-
ables X and Y is defined as shown in Equation 12:

r, = E[(X_ﬂX)(Y_ﬂY)] (12)

where E is the expectation operator, u_is the mean of
variable X, u_is the mean of variable Y, ¢_is the standard
deviation of variable X and o, the standard deviation of
variable Y.

2.7.5. Correlation Coefficient Analysis

Correlation coefficient results were used to determine
linear relationships among the geotechnical factors, spe-
cifically focusing on the correlation between water effect,
blast damage, and rock quality (represented by RQD and
Q). The t-statistic for assessing the significance of a cor-
relation coefficient is given by Equation 13:

2 (13)

where 7 is the number of data points, ¢ is the #-statistic
value, r is the Pearson correlation coefficient and # is the
number of data points.

The resulting p-value indicates the probability of ob-
serving such a correlation if there were no true linear
relationship between the variables.

2.7.6. Model Evaluation

The performance of the Random Forest Classifier was
evaluated using standard classification metrics, includ-
ing accuracy, precision, recall, and F1-score. For the
‘Unstable’ class:

The overall accuracy of the model, precision, recall
and Fl-score was calculated as shown in Equation 14,
15,16 and 17.
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Number of Correct Predictions
Total Number of Predictions

Accuracy = (14)

. True Positives
Precision = — — (15)
True Positives + False Positives

Recall = True Positives (16)
True Positives + False Negatives

Fl—score=2x Precision x Recall

(17)

Precision + Recall

To ensure the model’s robustness, 5-fold cross-valida-
tion was performed. The dataset was divided into 5
folds, and the model was trained and evaluated 5 times,
each time using a different fold as the validation set. The
average performance across the folds provided a more
reliable estimate of the model’s generalization ability.
The average metric across K folds in cross-validation
was computed using Equation 18:

] K
Metric = EZMetric[

i=1

(18)

where K is the number of folds used in cross-validation,
Metric, is the value of the evaluation metric on the i®
validation fold.

ROC Curve for Logistic Regression

Furthermore, the ROC curve used was to evaluate the
performance of a logistic regression model. The Receiv-
er Operating Characteristic (ROC) curve is a graphical
representation of the performance of a binary classifier.
It plots the True Positive Rate (TPR) against the False
Positive Rate (FPR) at different thresholds.

The TPR and FPR can be calculated using Equation
19 and 20:

TP

R=— (19)
TP+FN

FPR=—1F 20)
FP+TN

where TP is the number of true positives, FN is the num-
ber of false negatives, FP is the number of false posi-
tives, and TN is the number of true negatives.

The area under the ROC curve (AUC) was calculated
using Equation 21 to quantify the overall performance
of a logistic regression model.

1
AUC = [TPR(FPR)dFPR (1)
0

The AUC value ranges from 0 to 1, where 1 represents

perfect classification and 0.5 represents random guessing.

The logistic regression model can be represented
mathematically as shown in Equation 22:

P(Y=1|x)=1/(1+¢7) (22)
where P(Y=1|X) is the probability of the positive class
given the input features X, and z is a linear combination
of the input features (see Equation 23):

z=w,*w X, tw, X, +..+w X, (23)

Where w., are the weights assigned to each feature X.

3. Data Analysis

This study evaluates the stability of underground
mine stopes in the 2North Section by examining the ef-
fects of rock mechanical properties, blast-induced dam-
age, rock mass quality, and water presence. A combined
approach involving laboratory tests, field observations,
empirical classification systems, and machine learning
methods was employed to provide an integrated assess-
ment of stope stability and support design requirements.

3.1. Rock Mechanical Properties

The mechanical properties of intact rock are funda-
mental in assessing the overall stability and deformation
behaviour of underground excavations. In this study, lab-
oratory tests were conducted on representative rock sam-
ples to determine key strength parameters, including Uni-
axial Compressive Strength (UCS), Triaxial Compressive
Strength (TCS), and tensile strength, providing insight
into the inherent competence of the rock materials.

The UCS results demonstrated a relatively wide but
consistently high strength range, with values spanning
from 167 MPa in the ore zone to 215 MPa in the grano-
diorite unit (see Table 1). These values clearly classify
both lithologies as strong to very strong rocks based on
standard rock strength classification systems (ISRM).
Such high compressive strengths imply that, under un-
confined loading conditions, the intact rock is unlikely to
fail or undergo significant deformation, even when sub-
jected to the stresses typically encountered in under-
ground mining environments.

Table 1. Summary of Rock Mechanical Properties

Rock Type UCS TCS Tensile Strength
Metabasalt 172 NA NA
Metaandesite 175 NA NA
Granodiorite 215 NA 12.2
Ore zone 167 93.2 11.6

Note: Triaxial Compressive Strength Test was only done on
the ore zone and the Tensile Strength Test only on granodiorite
and the ore zone.

Further testing on ore zone samples revealed a TCS of
93.2 MPa, which, while lower than the UCS, reflects the
increased confinement typical of in-situ conditions and
demonstrates the material’s capacity to sustain stress un-
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der triaxial loading. This value is within the expected
range for strong, brittle rock and supports the conclusion
that the ore body itself, when intact, is mechanically
robust.

The tensile strength values were also notably high,
with the ore zone recording 11.6 MPa and granodiorite
slightly higher at 12.2 MPa. Tensile strength is critical in
determining the rock’s resistance to crack initiation and
propagation, especially in the presence of blast vibrations
or stress redistributions. These values suggest that the in-
tact rock would not readily fracture under tensile loading,
further reinforcing its competent mechanical nature.

However, despite these strong intact rock properties,
field observations and empirical assessments indicate in-
stability in certain stopes. This discrepancy points to a
key understanding in rock mechanics: while laboratory
strength data provides valuable baseline information,
rock mass behaviour in situ is dominantly controlled by
discontinuities (such as faults, joints, fractures, and bed-
ding planes) rather than the properties of the intact rock
alone (Li et al. 2023; Vinay et al. 2023). The presence
of geological discontinuities can dramatically reduce the
effective strength of the rock mass, acting as planes of
weakness along which shear displacement, dilation, or
separation may occur. This is particularly relevant in
jointed or faulted ground, where intact rock strength be-
comes a secondary consideration (Qi et al. 2018). As a
result, the rock mass strength is governed not only by the

intact strength but also by the orientation, persistence,
spacing, and surface conditions of these discontinuities.

In the context of the studied stopes, it is reasonable to
conclude that failure mechanisms are likely driven by
structural weaknesses rather than by the degradation of
the intact rock. This assertion is supported by other find-
ings in the study, such as moderate to high levels of frac-
turing (as evidenced by RQD values) and elevated blast-
induced damage (high PPV values). These factors col-
lectively reduce the overall rock mass quality and
increase the likelihood of instability, despite the high
laboratory-derived strength values.

3.2. Blast Damage Assessment

Blasting is an essential component of underground
mining, enabling efficient rock breakage and extraction.
However, improper blast design or execution can result
in excessive damage to the surrounding rock mass, com-
promising excavation stability. One of the most reliable
indicators of blast-induced damage is PPV - a dynamic
measurement of the vibration intensity caused by explo-
sive charges.

In this study, PPV values recorded during stope devel-
opment ranged from 229.5 mm/s to 3335 mm/s (see Fig-
ure 4). This considerable variation in PPV reveals incon-
sistent control over blast energy dissipation, with values at
the higher end far exceeding typical thresholds associated
with safe excavation practices. According to various em-
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pirical guidelines and case studies, PPV values exceeding
1000 mm/s are often associated with severe stress redistri-
bution, overbreak, and long-term deterioration of rock
mass properties, particularly in jointed or fractured
ground. The observed upper range of 3335 mm/s is there-
fore indicative of substantial blast-induced stress and po-
tential rock mass degradation in affected areas.

Further compounding this issue is the mean half-cast
factor, a metric used to evaluate the effectiveness of pe-
rimeter control blasting. In this case, the half-cast factor
was calculated at only 4.92% (see Figure 6) - a value
considerably lower than the acceptable range for well-
controlled blasting. The half-cast factor essentially re-
flects the proportion of blast holes that produce smooth,
half-round impressions on the final excavation perime-
ter. Low percentages indicate poor energy confinement,
excessive rock spalling, and a lack of controlled fractur-
ing at the boundary, leading to unintended overbreak and
increased wall damage.

The combination of high PPV values and a low half-
cast factor strongly suggests that blast damage is a sig-
nificant contributor to the deterioration of stope walls,
beyond what might be explained solely by geological
factors such as naturally blocky ground or fault struc-
tures. While the presence of pre-existing discontinuities
undoubtedly plays a role in how energy is transmitted
and fractures propagate, the primary mechanism of in-
stability in this case appears to be anthropogenic - spe-
cifically, suboptimal blasting practices.

It is also important to note that high PPV values have
a cumulative effect on the rock mass, especially in zones
with repeated blasting cycles. Damage induced by vibra-
tion may not be immediately visible but can manifest
over time as gradual loosening, slabbing, or rockfall. In
addition, blast-induced microcracks reduce the rock’s
elastic modulus and shear strength, thereby lowering the
overall stability of the excavation even in the absence of
visible failures.

3.3. Rock Mass Classification

The quality of the rock mass was evaluated using the
RQD and the Q-system, both of which are widely accept-
ed empirical classification methods in geotechnical engi-
neering. These assessments provided quantitative meas-
ures of the rock mass integrity and structural competence.
The results of this analysis are presented in Table 2.

3.3.1. Evaluation of Rock Mass Quality Using RQD

The Rock Quality Designation (RQD) serves as a key
indicator of the degree of fracturing within a rock mass
and is widely used in empirical rock mass classification
systems, including the Q-system. In this study, RQD val-
ues were assessed across four stopes to evaluate the in-
tegrity, continuity, and competence of the rock mass, all
of which are critical factors for ensuring the stability of
underground excavations.

Table 2. Summary of the rock classification results

Stope RMR | RQD Q Q Comment
2A 61 73 3.8 6 Good
3C 66 70 4.9 8 Good
2B 83 90 16.9 19 Very good

The results indicate that Stopes 2A and 3C exhibited
RQD values of 73% and 70% respectively, which clas-
sify them as moderately fractured rock masses, as shown
in Table 2. These values suggest the presence of fre-
quent jointing and discontinuities, which can compro-
mise the structural behaviour of the stope walls and
roofs, making them more susceptible to instability and
overbreak. The moderate RQD values in these stopes are
symptomatic of less competent rock that may require ad-
ditional support measures to ensure safe stope develop-
ment and long-term excavation performance.

The lower RQD values observed in Stopes 2A and 3C
can be attributed to a combination of blast-induced dam-
age and hydrogeological effects. Excessive blasting, es-
pecially in poorly controlled rounds, can create new
fractures and extend existing ones, thereby deteriorating
the surrounding rock mass. Moreover, elevated water
pressure within joints and fractures can further degrade
rock quality by reducing effective stress and contribut-
ing to joint dilation and weakening. These factors act
synergistically to exacerbate pre-existing geological
weaknesses, leading to the observed reduction in RQD.

In contrast, Stope 2B recorded a significantly higher
RQD, indicating improved rock mass quality and re-
duced fracture density. This suggests a more intact and
cohesive rock structure, which enhances load-bearing
capacity and decreases the likelihood of shear or tensile
failure along joint planes. As such, Stope 2B is expected
to exhibit better performance in terms of ground control,
reduced support requirements, and lower risk of over-
break. Notably, Stope 2B exhibited the highest RQD at
90%, denoting a very competent and unfractured rock
mass. Such high values are indicative of minimal dis-
continuities, with long, continuous core pieces recov-
ered during drilling, reflecting superior geological con-
ditions. This degree of rock mass integrity is typically
associated with enhanced stope stability, increased safe-
ty, and more cost-effective excavation due to lower sup-
port demands.

This interpretation is further supported by field obser-
vations and geotechnical logs, which noted signs of wa-
ter ingress and irregular fracture patterns in these stopes.
The presence of water not only promotes mechanical
deterioration but can also lead to chemical alteration of
joint infill, compounding the loss in structural cohesion.
As a result, the stope stability in these areas is compro-
mised, and targeted mitigation strategies (such as im-
proved blast control, pre-drainage techniques, and local-
ized support installation) may be necessary.
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3.3.2. Evaluation of the Rock Mass Quality
Using the Q-system

In this study, the Q-system analysis yielded distinct
variations across the analyzed stopes, revealing signifi-
cant differences in rock mass conditions and their impli-
cations for stope stability. Stope 2B recorded the highest
Q-value of 16.9, categorizing it as a good quality rock
mass, as shown in Table 2. This high value is primarily
attributed to favourable geological conditions, specifi-
cally the absence of groundwater and the presence of
clean, clay-free joint infill. The lack of water is particu-
larly significant, as water acts as a destabilizing agent by
reducing effective stress, lubricating joint surfaces, and
weakening rock-bridging elements. Moreover, clay-free
joints contribute to better interlocking and higher shear
resistance, both of which are essential for maintaining
the structural integrity of excavated openings.

The elevated Q-value for Stope 2B directly correlates
with its observed stability and larger tolerable unsup-
ported span, suggesting that it may require minimal
ground support, thereby offering potential cost and op-
erational efficiency advantages during mining opera-
tions. These findings underscore the importance of dry
conditions and joint cleanliness as critical contributors
to excavation stability.

In contrast, Stopes 2A and 3C exhibited significantly
lower Q-values of 3.8 and 4.9, respectively, placing them
in the fair to poor rock quality category. These values
reflect moderate stability conditions that warrant more
conservative excavation designs and likely necessitate
reinforced support systems. A key factor influencing the
reduced Q-values in these stopes is the presence of
groundwater, which adversely affects several Q-system
parameters. Water reduces the Jw factor, indicating wet
or saturated conditions, and contributes to the alteration
of joint infill materials, thereby decreasing the Ja and po-
tentially increasing joint activity and deformation risk. In
such environments, joints are more likely to become crit-

Table 3. Maximum tolerable unsupported length
of the stopes

ically stressed, leading to increased dilation, rock block
detachment, and potential stope wall instability.
Interestingly, Stope 3C displayed a slightly higher Q-
value than Stope 2A, which can be attributed to its high-
er joint friction, represented by a greater Jr value. Joint
roughness enhances mechanical interlocking between
rock blocks, providing increased resistance to shear fail-
ure even in the presence of water or other weakening
agents. This factor offers marginally better performance
in Stope 3C, although not sufficient to significantly alter
its classification within the Q-system. The influence of
joint friction also highlights the multifactorial nature of
rock mass behaviour, where improvements in one pa-
rameter may partially offset deficiencies in others.

Overall, the Q-system analysis provided quantitative
insight into the geomechanical performance of the vari-
ous stopes. The results emphasize that Stope 2B offers a
more stable mining environment, while Stopes 2A and
3C require additional engineering interventions. These
findings reinforce the value of the Q-system in pre-min-
ing assessments and its ability to guide risk-informed
stope design, ground support selection, and excavation
sequencing in underground mining operations

3.3.3. Use of the Q results to evaluate stope
stability

The maximum tolerable unsupported span, derived
using the Q-system empirical design method, serves as a
critical parameter in assessing the relative stability of
underground stopes. This span refers to the largest exca-
vation width that can be safely maintained without the
use of additional ground support, based on the rock mass
quality and structural conditions. It is directly influenced
by the Q-value, which integrates key factors such as
RQD, joint set number, joint roughness, groundwater
conditions, joint alteration, and stress reduction due to
excavation geometry.

In the context of this study, Stope 2B exhibited the
highest tolerable unsupported span, reflecting its supe-
rior rock mass conditions and overall stability, as shown
in Table 3. This result is consistent with its higher Q-
value and RQD, which indicate a competent rock mass

Mnnamioleranic with fewer fractures, clean joint surfaces, and minimal
Stope ESR Q : B
unsupported length(m) water ingress. The ability of Stope 2B to support a larger
Stope 2A 16 38 55 span without reinforcement suggests that the rock mass
Stone 3C 6 49 6.0 is well-interlocked and capable of withstanding the in-
2 : : : duced stresses from mining without immediate risk of
Siigjg 25 L5 LED — collapse or significant deformation.
Table 4. The calculated Modified Stability Number and Hydraulic radius
STOPE DIMENSIONS | POTVIN FACTORS STABLE STOPE SPAN
Stope Joint Or:entatlon Wldlt[:l(W) Hel%rl:t(h) A B C Qo N Hydraulic Radius
2A 45 31 37 1 0.5 6 6 13.5 8.43
3C 30 36 40 1 0.2 6 8 15.2 9.47
2B 30 29 35 1 0.2 6 19 26.2 7.93
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In contrast, Stopes 2A and 3C demonstrated consider-
ably lower maximum unsupported spans, signaling re-
duced stability and a higher probability of requiring arti-
ficial support systems. These stopes also recorded lower
RQD values (73% and 70%, respectively), indicating
more intense fracturing and possibly blast-induced dam-
age or degradation due to groundwater pressure. The re-
duced span capacity in these areas implies that the rock
mass cannot reliably sustain large openings, as disconti-
nuities such as joints, fissures, and weakened zones may
serve as planes of failure, especially under the influence
of gravity and mining-induced stress changes.

The strong correlation between RQD and the calcu-
lated unsupported spans emphasizes the significance of
rock mass fragmentation and structural integrity in stope
design. RQD, as a measure of the degree of fracturing in
the core samples, directly impacts the overall Q-value
and, subsequently, the recommended excavation span.
This highlights the necessity of accurate geotechnical
logging and sampling in the early stages of mine design
to ensure safe and efficient stope development.

Furthermore, the variation in span tolerances among
the stopes suggests that site-specific ground control strate-
gies are essential, rather than relying on a generalized de-
sign approach. While Stope 2B may safely accommodate
wider openings, Stopes 2A and 3C would benefit from
narrower spans or the implementation of support systems
such as cable bolts, mesh, or shotcrete to mitigate the risk
of overbreak and ensure worker safety.

3.4. Stope Stability Assessment

To assess the stability of the evaluated stopes, the
modified stability number (Q’) and hydraulic radius
were calculated, as summarized in Table 4. These pa-
rameters are central to the Mathews Stability Graph
method, where the stability number (Q') incorporates
key rock mass quality factors such as joint condition,
groundwater influence, and joint orientation, while the
hydraulic radius reflects the geometry of the excavation.

Among the analyzed stopes, Stope 2B demonstrated the
highest Q' value, indicating the most favourable rock mass
conditions overall. Interestingly, this high stability number
was maintained despite a relatively low joint orientation
factor (B). This suggests that the inherent rock quality (re-
flected in parameters like intact rock strength, joint spac-
ing, and absence of water) played a dominant role in pro-
moting stability. In other words, while unfavourable joint
orientation typically reduces stability, the overall robust-
ness of the rock mass in Stope 2B was sufficient to offset
the negative influence of joint orientation. This finding
highlights the complex interplay between geological and
structural factors in influencing excavation performance,
where strong, dry, and tightly interlocked rock masses can
compensate for less-than-ideal joint alignments.

However, the analysis also reveals a critical point re-
garding the mechanism of potential failure. In stopes
with lower Q' values and less favourable geometrical or

structural conditions, such as 2A and 3C, failure is likely
to initiate along joints that intersect the free face at small
angles. These low-angle joints act as potential sliding
surfaces, especially when oriented sub-parallel to the ex-
cavation walls or roof. Such orientations reduce the
shear resistance along the joint planes, particularly when
combined with stress relief from excavation or the pres-
ence of water, which can lower effective stress and lubri-
cate joint surfaces. This failure mechanism is consistent
with observed overbreak patterns in similar mining set-
tings and underscores the importance of joint orientation
analysis in ground control planning.

Furthermore, the relationship between Q" and HR on
the Mathews Stability Graph places these stopes within
the potentially unstable region, suggesting that while
outright failure may not be imminent, there is an elevat-
ed risk that warrants attention. In practice, this means
that additional support measures or modifications to
stope dimensions may be required to maintain stability,
particularly in areas where joint geometry and excava-
tion layout intersect unfavourably.

3.4.1. Mathews Stability Graph

The results derived from the Mathews Stability Graph
(see Figure 7) reveal that all analyzed stopes plot within
the “potentially unstable” zone of the graph. This zone,
positioned between the empirically defined stable and
failed regions, represents a range of hydraulic radius and
stability number (N) combinations where stope perfor-
mance is highly sensitive to local geological, structural,
and operational conditions. It indicates that the analyzed
stopes, while not necessarily prone to immediate failure,
exhibit a heightened risk of instability and would likely
require additional support measures or design modifica-
tions to maintain structural integrity.

Among the evaluated stopes, Stope 2B demonstrates
the highest relative stability, as indicated by its location
within the potentially unstable zone at a higher Stability
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Figure 7. Stop Stability Results on Mathews’ stability graph
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Number (N), positioning it closer to the stable region.
This observation is supported by its comparatively higher
Q-value, which reflects more favourable rock mass con-
ditions, and a greater RQD, suggesting a higher degree of
intact rock within the core samples. The Q-value, which
incorporates factors such as joint set number, joint rough-
ness, joint alteration, and groundwater conditions, plays
a direct role in the computation of the stability number
(N). A higher Q-value in Stope 2B therefore results in a
higher N, shifting its plot point further to the right on the
stability graph and indicating improved stability.

This trend validates the underlying empirical relation-
ships embedded in the Mathews Stability Graph method.

The graphical output aligns well with the field data and
quantitative input parameters, especially in the case of
Stope 2B, where the correlation between good rock mass
quality and predicted stability is clearly evident. Howev-
er, the fact that all stopes fall within the potentially unsta-
ble region (even those with moderate to high rock quality)
emphasizes the critical role of stope geometry, particular-
ly the hydraulic radius, in influencing stability outcomes.

3.5. Machine Learning Analysis Using Scikit-Learn

Machine learning analysis was conducted using the
Scikit-learn library, a robust and widely adopted frame-
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work in Python for building and evaluating machine
learning models. The workflow began with data preproc-
essing, which involved handling missing values, encod-
ing categorical variables, and scaling features to ensure
uniformity across the dataset. Following preprocessing,
the dataset was split into training and testing subsets to
facilitate fair model evaluation and eliminate overfitting.
Model evaluation metrics including accuracy, precision,
recall, F1-score, were calculated to compare algorithm
performance and select the most effective model for the
task. Visual tools such as confusion matrices and ROC
curves were used to interpret classification results.

3.5.1. Feature Importance Analysis

To understand the relative influence of various geo-
technical factors on stope instability, the Random Forest
Classifier from the Scikit-Learn library was employed to
perform feature importance analysis. The choice of Ran-
dom Forest was motivated by its ability to handle both
categorical and numerical data, its robustness against
overfitting, and its capacity to provide feature impor-
tance scores based on the mean decrease in impurity.

Prior to model training, categorical variables (water
effect and blast damage) were encoded using ordinal en-
coding, assigning numerical values representing the se-
verity levels (e.g. low=0, medium=1, high=2). Numeri-
cal features (RQD, Rock Strength, RMR) were standard-
ized using Scikit-Learn’s StandardScaler to ensure
consistent scaling.

The feature importance scores, as visualized in Fig-
ure 8, revealed that water effect was the most influential
factor in predicting stope instability, followed by blast
damage and RMR. RQD and Rock Strength exhibited

comparatively lower importance. This suggests that the
presence of water and the extent of blast damage signifi-
cantly contribute to instability, potentially by exacerbat-
ing existing discontinuities and reducing the effective
strength of the rock mass.

It is important to note that the feature importance
scores are relative and should be interpreted within the
context of the dataset. While Rock Strength showed low
importance, it does not imply it’s entirely negligible;
rather, its variability within the dataset might be less in-
fluential compared to other factors.

3.5.2. Recursive Feature Elimination Analysis

The Recursive Feature Elimination (RFE) process
was used to evaluate the importance of each feature in
predicting stope stability (see Figure 9). The results
showed that water effect, blast damage, and RMR were
consistently ranked as the top features, indicating their
high importance in predicting stope stability. When these
features were removed from the model, the performance
dropped significantly, further confirming their impor-
tance. The RFE analysis provided further insight into the
relationships between the geotechnical factors and stope
instability, and supported the findings of the feature im-
portance analysis.

3.5.3. Decision Boundary Analysis

To further explore the interaction between the two
most significant factors, water effect and blast damage,
we performed a decision boundary analysis. This tech-
nique visualizes the classifier’s predictions across the
feature space, illustrating how different combinations of
water effect and blast damage influence stope stability.
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Figure 10 shows the decision boundary generated by
the Random Forest Classifier. The yellow area repre-
sents the region where the model predicted “Stable”
stope conditions, while the purple area represents “Un-
stable” conditions.

The analysis revealed that:

Water effect is a dominant predictor: when water
effect is low (0) or medium (1), the classifier predicts
“Stable” regardless of blast damage severity. This sug-
gests that in the absence of significant water influence,
even high levels of blast-induced damage are unlikely to
compromise stope stability.
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High water effect increases instability risk: when
water effect is high (2), the classifier predicts “Unstable”
for medium (1) and high (2) blast damage levels. This
indicates that elevated water influence substantially in-
creases the risk of instability, particularly when com-
bined with blast damage.

Interaction effect: the decision boundary analysis
underscores a strong interaction between water effect
and blast damage. Specifically, a high-water effect am-
plifies the destabilizing impact of blast damage, pointing
to a compounded influence on stope stability.

3.5.4. Data Distribution Analysis

Feature distribution plots (see Figure 11) reveal a
positive correlation between rock strength and RMR, in-
dicating that higher-strength rocks are generally associ-
ated with better rock mass quality. Additionally, a posi-
tive correlation was observed between water effect and
blast damage, suggesting that the presence of water may
exacerbate the extent of blast-induced damage. This dis-
tribution analysis is critical for understanding the inter-

Classification Report:
precision  recall fl-score support
0 0.75 1,00 0.86 3
1 1.00 0,67 0.80 3
accuracy 0.83 6
Macro avg 0.88 0.83 0.83 6
weighted avg 0.88 0.83 0.83 6

Figure 13. Classification report extract

relationships among geotechnical factors and plays a
vital role in informing the design of appropriate ground
support systems.

3.5.5. Correlation Coefficient Analysis

The correlation coefficient analysis shows a strong
negative linear relationship between water effect and
rock quality, and a moderate negative linear relationship
between blast damage and rock quality (see Figure 12).
This suggests that the presence of water is associated
with a decrease in rock quality, and that blast damage is
also associated with a decrease in rock quality. The cor-
relation coefficient analysis is essential in understanding
the relationships between the factors and designing ap-
propriate support systems.

3.5.6. Model Evaluation
and Limitations

The performance of the Random Forest Classifier was
evaluated by using multiple metrics, achieving an accu-
racy of 0.83, precision of 0.88, recall of 0.83, and an
F1-score of 0.83, as illustrated in Figure 13. To assess
the model’s robustness and its ability to generalize to
unseen data, a 5-fold cross-validation procedure was
conducted. In this process, the dataset was randomly
partitioned into five equal subsets; in each iteration, four
subsets were used for training and the remaining one for
testing, ensuring that each subset served as the test set
exactly once. The performance metrics averaged across
the five folds were consistent with those obtained from
the initial model evaluation. This consistency indicates
that the model does not suffer from overfitting and dem-
onstrates reliable generalization capability. Such valida-
tion strengthens confidence in the model’s predictive

AUC Curve for Logistic Regression
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reliability when applied to new or unseen geotechnical
datasets.

It is important to acknowledge several limitations as-
sociated with this analysis. First, the dataset used for
training the machine learning model was relatively lim-
ited in size, which may constrain the model’s ability to
fully capture the underlying complexity and non-linear
interactions among geotechnical features. This limita-
tion could affect both the generalizability and robustness
of the predictive outcomes. Second, while categorical
encoding was employed to represent variables such as
water effect and blast damage, this approach simplifies
the inherently complex and continuous nature of these
factors. Although effective for initial modelling purpos-
es, such simplification may lead to a loss of nuanced in-
formation. Future research could benefit from the use of
more advanced encoding methods, such as ordinal en-
coding, one-hot encoding with domain-specific thresh-
olds, or even continuous variable modelling, to better
reflect the true variability and interactions of these pa-
rameters.

Furthermore, the data used in this study were collect-
ed exclusively from the 2North Section of the mine. As
a result, the model’s applicability may be limited to this
specific geological and operational context, and its pre-
dictions may not be directly transferable to other sec-
tions of the mine with differing geotechnical or hydro-
logical conditions. To enhance the model’s predictive
power and generalizability, future studies should con-
sider expanding the dataset, incorporating additional
features such as joint orientation, stress regime, or time-
dependent effects, and applying the model across multi-
ple zones of the mine. These improvements would allow
for a more comprehensive assessment of stope stability
and broader applicability of the model outcomes.

Figure 14 displays the Receiver Operating Character-
istic (ROC) curve for the trained Logistic Regression
model. The ROC curve plots the true positive rate (sen-
sitivity) against the false positive rate (1 - specificity) at
various classification thresholds. The Area Under the
Curve (AUC) provides a single scalar value summariz-
ing the overall performance of the classifier for different
classes. The AUC values for Class Potentially unstable,
Class stable, and Class unstable are 0.545, 0.403, and
0.729, respectively.

The ROC curve and AUC values provide insight into
the model’s ability to balance true positives and false
positives, which is crucial for practical applications in
mining engineering. The results indicate that the model
performs relatively well in predicting “unstable” stopes
(AUC = 0.729), suggesting that it can effectively identi-
fy instances that are likely to be unstable. However, the
model’s performance for “stable” stopes is poor (AUC =
0.403), indicating that it struggles to distinguish between
stable and other classes. The model’s performance for
“potentially unstable” stopes is moderate (AUC =
0.545), suggesting that it can identify some instances
that are potentially unstable, but with limited accuracy.

The varying AUC values across classes suggest that
the model may be biased towards certain classes or that
the features used to train the model are not equally in-
formative for all classes. To improve the model’s perfor-
mance, it may be necessary to collect more data, particu-
larly for the classes with lower AUC values, or to ex-
plore alternative feature engineering strategies.
Additionally, hyperparameter tuning or the use of en-
semble methods may help to improve the model’s over-
all performance.

4. Discussion

This study applied a machine learning approach to
predict stope instability, building upon and contrasting
with traditional empirical and analytical methods. While
classical approaches like the Mathews Stability Graph
(Mathews et al., 1981) and rock mass classification sys-
tems (Bieniawski, 1973; Barton et al., 1974) provide
foundational insight, their inherent limitations often
arise from their reliance on simplified parameters and
site-specific calibrations. For instance, the stability
graph method, while widely used, may not fully capture
the complex, non-linear interactions between multiple
geotechnical factors. Our findings, particularly the
strong influence of water ingress and blast-induced dam-
age identified by the Random Forest model, underscore
the need for models that can discern such intricate rela-
tionships more effectively than traditional empirical for-
mulas alone.

Previous studies, such as Adoko et al. (2022), have
successfully demonstrated the application of neural net-
works for stope design, achieving high prediction accu-
racies. Similarly, Li et al. (2023) and Vinay et al. (2023)
highlight the effectiveness of Random Forest and Sup-
port Vector Machines in predicting stope instability. The
strength of our approach lies in its practical application
of the Scikit-Learn library to a specific shallow gold
mining environment, providing a granular analysis of
feature importance that quantifies the relative impact of
each geotechnical factor. While other studies may focus
on broader datasets or different mining contexts, our
work offers a tailored solution directly applicable to the
identified challenges in the 2North Section.

A significant advantage of the machine learning ap-
proach over purely empirical methods is its capacity to
handle large, heterogeneous datasets and identify subtle,
non-linear patterns that might be overlooked by simpli-
fied models. For example, the decision boundary analysis
clearly illustrated the amplifying effect of high water in-
gress on instability when combined with moderate blast
damage — a synergistic interaction that empirical formu-
las might struggle to quantify precisely. This directly
translates to practical benefits for end-users in the mining
sector, enabling more proactive and precise interven-
tions. By accurately predicting high-risk areas, mine op-
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erators can optimize the deployment of support systems,
leading to reduced material consumption, improved safe-
ty by minimizing exposure to unstable ground, and ulti-
mately, enhanced operational efficiency and mineral re-
serve optimization through reduced dilution and down-
time. This also extends to machinery maintenance, as a
more stable ground reduces the risk of equipment dam-
age from rockfalls and ground movement.

However, this study also presents limitations. The
relatively limited dataset size inherently restricts the
model’s generalizability beyond the specific geological
and operational context of the 2North Section. While the
5-fold cross-validation indicated robust performance
within this dataset, applying the model directly to other
mine sections without further training or validation
could yield inaccurate predictions. Furthermore, the use
of categorical encoding for water effect and blast dam-
age, while practical, simplifies the continuous nature of
these phenomena. Future research should explore larger,
more diverse datasets and advanced encoding techniques
(e.g. continuous variables or more granular ordinal
scales) to enhance model robustness and transferability.
Incorporating additional features such as joint orienta-
tion, in-situ stress regimes, and time-dependent effects
would also further refine predictive accuracy, leading to
more comprehensive ground control solutions.

Table 5. Fall out heights and support demand of the stopes
under investigation

4.1. Stope Failure Analysis

Rock falls with medium and high hazard intensity are
dominating stopes 2A and 3C, indicating the failure of
support systems. The support system consists of natural
in-situ pillars left randomly in stopes, relying on the ex-
cellent rock mass quality of the stopes. The adopted sup-
port design from 2South Section, had a maximum toler-
able unsupported length of 7.5m which deviated from
the calculated values. The maximum tolerable unsup-
ported length for stope 2A and 3C deviated negatively
with a magnitude of 2.5m and 1.5m respectively. This
entails the deterioration of the rock mass quality in these
stopes. As the rock mass quality was altered, the stope
shape factor became insignificant for the design thus the
stope stability decreased. As a result, new support re-
quirements which may include artificial support are now
necessary.

4.2. Support Demand and Pattern

The analysis of support demand and support pattern
indicates that the proposed support configuration is ad-
equate for maintaining the stability of the stopes, as de-
tailed in Tables 5 and 6. The support demand was quan-
titatively estimated based on established rock mass clas-
sification systems (RMR and Q-system) and evaluated
using the Mathews’ stability graph method, which inte-
grates rock quality, stope geometry, and excavation span
to determine required support levels.

Densit Fall Out | Fall Out | Support The proposed support pattern was designed to ensure
Stope Ke;/s;lsy Height | Height | Demand an even distribution of load and to accommodate local-
No. m kN/m’ ized stress concentrations, particularly around larger
Stope 2A 2700 1 1.17 31 load-bearing pillars. This design approach considers
2700 1.27 34 both the mechanical properties of the rock mass and the
2700 3 1.21 32 empirical stability zones defined in the stability graph.
Average 122 32 The patte'm a@ms to transfgr and distribute loads effgc—
Stope 3C 2700 125 13 tl\(ely, minimize defqrma‘mon, and prevent progressive
failure, thereby ensuring the long-term structural integ-
2700 1.29 34 . . . .. .-
rity of the stopes under anticipated mining conditions.
2700 3 1.21 32 . .
The support demand was calculated using Equation 24.
Average 1.25 33
Stope 2B 2700 0.77 20 Support Demand per m* = pgh (24)
2700 0.68 18 . . .
where p is the verage density of the overlying rock mass,
2700 3 0.72 19 . . . .
g is the acceleration due to gravity and /4 is the Fall-out
Average 0.72 19 height.
Table 6. The tributary area for rock fall conditions and the corresponding support spacing
. Support Ressistance | Support Demand | Tributary Area for rock falls | Support Spacing
Stope Support Unit KN KN/m? m? M
Stope 2A | 22mm cone bolt 190 32 5.9 2.4
16mm cone bolt 100 32 3.1 1.8
Stope 3C | 22mm cone bolt 190 33 5.8 2.4
16mm cone bolt 100 33 3.0 1.8
Stope 2B 80 19 4.2 2.1
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5. Conclusions

Stope instability remains a critical challenge in under-
ground mining, often leading to hazardous conditions,
production delays, and financial losses. Traditional em-
pirical and numerical methods, while effective, are lim-
ited by site-specific constraints and require extensive
calibration. This study presents a practical machine
learning (ML) approach for predicting stope instability
by analyzing the main geotechnical parameters. The fol-
lowing are the findings of this study:

a) the primary geotechnical factors influencing stope
instability in the 2North Section of the mine are
water effect, blast damage, and poor rock mass
quality, with water effect being the most signifi-
cant factor.

b) stopes 2A and 3C have lower rock quality (RQD
and Q-system values) compared to Stope 2B, indi-
cating higher potential for instability.

¢) blast damage assessment revealed significant dam-
age to the remaining rock mass, with a lack of prop-
er perimeter control during blasting operations.

d) the analysis using the Scikit-Learn Machine
Learning Library confirmed that water effect, blast
damage, and RMRs are the most important factors
affecting stope instability, while rock strength has
the least influence.

e) the Random Forest Classifier demonstrated strong
predictive performance, achieving an accuracy of
0.83, precision of 0.88, recall of 0.83, and an F1-
score of 0.83. This performance was consistent
across 5-fold cross-validation, indicating the mod-
el’s reliability and generalization capability.

f) the stopes are all situated in the potentially unsta-
ble zone on the stability graph, with Stope 2B be-
ing more stable than the other two.

g) the adopted support design from 2South Section
has been considered insufficient due to changes in
rock mass quality, necessitating new support re-
quirements for an effective ground support sys-
tem. The maximum tolerable unsupported lengths
of the stopes had significantly reduced, stopes 2A
by 29% and 3C by 21%.

h) the proposed machine learning approach offers a
robust and practical tool for mine operators, al-
lowing for more accurate predictions of stope in-
stability, thus enabling optimized resource alloca-
tion for support systems and enhanced safety by
reducing exposure to hazardous conditions.

i) future research should focus on expanding the
dataset to include a wider range of geological and
operational conditions from multiple mine sec-
tions, exploring continuous variable modeling for
factors like water pressure and blast intensity, and
incorporating additional parameters such as joint
orientation and in-situ stress regimes to further en-

hance the model’s generalizability and predictive
accuracy.

j) the current state of the ground welcomes the ap-
plication of additional mining techniques to im-
prove the stability of the stopes, thus providing a
secure working environment for employees, and
supervision.
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SAZETAK

Odrziv i prakti¢an pristup strojnom ucenju
pomocu Scikit-Learn baze za procjenu nestabilnosti ¢ela radilista:
identifikacija klju¢nih geotehnickih ¢imbenika

Nestabilnost ¢ela radilista i dalje je stalan i opasan izazov u podzemnoj eksploataciji, s negativnim utjecajem na sigur-
nost, uc¢inkovitost i odrzivost. Tradicionalne metode procjene stabilnosti, iako korisne, ¢esto su ograni¢ene potrebom za
bazdarenjem na specifitnome lokalitetu, pojednostavnjivanjem i slabom prilagodljivo$¢u u dinami¢nim podzemnim
uvjetima. lako strojno uéenje pokazuje potencijal za pobolj$anu to¢nost, i dalje postoji velik nedostatak razumijevanja
kako geotehnicki ¢cimbenici medusobno djeluju u praksi. Ovo istrazivanje predstavlja novu, prakti¢nu okosnicu strojno-
ga ucenja (Scikit-Learn) za procjenjivanje nestabilnosti ¢ela radilista te klju¢noga kvantificiranja suptilnoga nelinearnog
utjecaja i medudjelovanja klju¢nih geotehnickih ¢imbenika u plitkome rudniku zlata. Sveobuhvatno geotehnicko ispiti-
vanje (opaZanja, laboratorijska ispitivanja, klasifikacije stijenskih masa, procjene o$tec¢enja uslijed miniranja) i napredna
analiza podataka (Random Forest, Recursive Feature Elimination, Decision boundary analysis) identificirali su najvaZnije
¢imbenike nestabilnosti: prodor vode, o$te¢enja uzrokovana miniranjem i kvalitetu stijenske mase (RMR). Prodor vode
imao je velik utjecaj na stabilnost, pri ¢emu su umjerena o$tecenja od miniranja dodatno pogorsavala nestabilnost u
uvjetima visokoga prodora vode. Cvrstoca stijenske mase pokazala se relativno manje vaznom. Razvijeni model postigao
je snaznu prediktivnu uc¢inkovitost (to¢nost: 0,83, preciznost: 0,88, odziv: 0,83, F1 mjera: 0,83). Na temelju tih znanja
predloZeni su prilagodeni oblici podgrade (npr. konusna sidra 22 mm / 16 mm, drvena podgrada) kako bi se ublazili
specifi¢ni rizici. Ovo istrazivanje znatno doprinosi ciljanom rje$avanju problema u mehanici stijena pruzajuci dublje,
kvantificirano razumijevanje slozenih mehanizama nestabilnosti, ¢ime se poboljava sigurnost i operativna u¢inkovitost
kod plitke eksploatacije zlata.

Klju¢ne rijeci:
geotehnicki ¢imbenici, nestabilnost ¢ela radilista, strojno ucenje, klasifikacija stijenske mase, plitko rudarenje, podgrada
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