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Abstract
The Gola Gas field in the northwestern Drava Basin lies within the structurally complex petroleum system. Its sandstone 
reservoirs exhibit spatial heterogeneity due to deltaic fan sedimentation, necessitating robust interpretation tools. We 
present a fully Python-based seismic horizon extraction and 3D geological modelling workflow tailored to this challenge. 
The method leverages the greedy propagation method to track horizons with optimal reflector continuity, overcoming 
limitations of manual interpretation and traditional auto-pickers in faulted or noisy zones. An initial approximation is 
provided via seed-guided interpolation. Around this surface, a seismic sub-volume is extracted and flattened to align 
reflections. Within this volume, the greedy algorithm identifies a locally optimal path, maximizing continuity and am-
plitude strength. Our implementation extends the cost-based framework with slope guidance, local correlation, and 
robust outlier filtering to ensure geologic realism and repeatability. Surfaces are converted to 3D meshes using interpola-
tion and smoothing, and the results are integrated into an interactive 3D geological model of the Gola field. For the first 
time in the research area, the model was built entirely in Python, enabling automated horizon extraction, geobody visu-
alization, and seismic interpretation within a flexible, open-source environment.
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1. Introduction

The Gola Gas field, located in the northwestern Drava 
Basin, lies within the “Deep Drava” petroleum system, a 
structurally complex zone shaped by syn-rift tectonics 
from the Early to Middle Miocene (Lučić et al., 2001; 
Pavelić, 2001; Royden, 1988) (see Figure 1). Miocene 
sediments, unconformably overlying Mesozoic base-
ment, include bioclastic limestones, lithic sandstones, 
and fine-grained conglomerates deposited in marine and 
deltaic environments. In the NW part of Gola, sandy 
conglomerate sequences and bioclastic limestones dom-
inate, with evidence of high-density turbidity currents 
depositing coarse detritus on delta slopes (Lowe, 1982). 
Gas reservoirs occur mainly in Lower and Middle Mio-
cene clastic units at depths of 1800–3950 m (Saftić et 
al., 2003), with lateral and vertical heterogeneity reflect-
ing variable depositional settings – from continental to 
shallow marine. These units exhibit significant lithologi-
cal variability and reservoir quality, with bioclastic car-
bonates forming key gas-bearing intervals. Although 
some conglomerates and sandstones lack fossils, their 

sedimentological features suggest subaqueous deposi-
tion in a proximal prodelta to shallow marine setting 
(Tadej, 2011). The importance of the selected research 
area lies in the fact that the deeper subsurface is known 
for its gas bearing calcitic reservoirs in Early to Middle 
Miocene and has therefore been explored (Tadej, 2011). 
However, it has been established that the shallow, Upper 
Miocene reservoir sandstones of the Gola field were de-
posited within the sedimentary channels and lobes of 
prograding delta fans and are classified as stratigraphic 
traps (Brcković et al., 2024). The importance of deline-
ating sandstone reservoirs lies in the heterogeneity of 
their spatial distribution and complex sedimentation in 
deltaic fan environment. The reservoir properties, such 
as porosity and permeability, have been determined us-
ing the core measurements (Tadej, 2011). However, due 
to intertwined layering of sandstones and shales, the res-
ervoir connectivity is still to be determined and de-
scribed. The reservoir sandstones have been established 
in well data (Brcković et al., 2024; Tadej, 2011). How-
ever, limitations of traditional seismic interpretation 
methods provides the space for the application of ma-
chine learning methods assisted interpretation. This is 
why the aim of the article is to present a reproducible 
Python-based framework combining local greedy propa-
gation method for seismic interpretation, leading to the 
geological modelling of the research area. Horizons 
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themselves are not isolated artifacts but are essential in-
puts to stratigraphic modelling and the basis for under-
standing reservoir architecture. To illustrate the broader 
geological utility of the extracted horizons, independent-
ly derived geobodies were integrated with stratigraphic 
surfaces to construct a more comprehensive subsurface 
model.

Seismic horizon interpretation is a basic step in geo-
logical modelling framework, which is essential for 
characterizing structural and stratigraphic frameworks 
in the subsurface. Traditionally, horizons are identified 
manually by interpreters who follow coherent reflectors 
in seismic sections. While this approach can provide 
geologically valid results, it is often subjective, labor-
intensive, and limited in resolution and consistency, es-
pecially in large 3D seismic datasets or in structurally 
complex areas with faults, noise, or stratigraphic discon-
tinuities (Yan & Wu, 2021). Recent methodological in-
novations have aimed to automate horizon picking to 
overcome these limitations. Among them, slope-based 
methods use local dip estimates to propagate horizon 
picks (Wu & Fomel, 2018). While robust in relatively 
continuous settings, they struggle with abrupt termina-
tions of horizons such as those formed by faulting. To 
address this, Wu & Fomel (2018) proposed multigrid 
correlations to enhance continuity, and Bugge et al. 
(2019) introduced non-local trace matching to better 
capture lateral reflection relationships in discontinuous 
settings. A major leap in horizon extraction has come 
with the use of deep learning. For instance, Bi et al. 

(2021) developed a volume-to-volume convolutional 
neural network that estimates a relative geologic time 
(RGT) volume from seismic data. This RGT volume can 
simultaneously capture horizons and faults by treating 
them as isosurfaces and discontinuities, respectively. 
The approach leverages synthetic training data and 
structural similarity-based loss functions to generalize 
across various seismic settings (Bi et al., 2021). Others 
similarly used U-Net architectures for direct horizon ex-
traction from seismic amplitudes, showing that neural 
networks can handle complex geometries and disconti-
nuities when trained appropriately (Tschannen et al., 
2020) . Despite the efficiency of deep learning, it re-
mains computationally expensive, data-hungry, and of-
ten difficult to interpret or control. As a complementary 
alternative, dynamic programming (DP) offers an effi-
cient, deterministic method for extracting optimal seis-
mic paths and surfaces. Yan & Wu (2021) proposed a 
DP-based refinement method that starts from a coarse 
initial horizon and searches for the optimal amplitude-
consistent surface within a defined window. This ap-
proach does not rely on continuous slopes alone, making 
it particularly adept at following reflectors through 
structurally disturbed zones such as faults or unconform-
ities. Moreover, it integrates user guidance through 
sparse control points or seed values, which enhances in-
terpretability and flexibility (Yan & Wu, 2021). In con-
trast to deep networks, dynamic programming is not 
data-driven but instead exploits local correlation struc-
ture and global optimization to ensure geological real-

Figure 1. Geographical position of the main research area (Gola field), broader area with seismic  
data containing the main research area, wells position (well top data) on a map of central Europe  

with Panonnian Basin System borders delineated.
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ism. It is computationally lightweight and interpretable, 
making it a valuable tool for semi-automatic workflows 
or for use alongside machine learning where ground 
truth is limited. By combining these approaches – tradi-
tional slope estimation, non-local matching, and dynam-
ic programming – modern seismic interpretation frame-
works can achieve unprecedented precision and reliabil-
ity in horizon tracking. This enables more robust 
geobody extraction, reservoir modelling, and subsurface 
analysis, especially in complex geologies where manual 
or purely slope-based methods fail to trace seismic hori-
zons adequately.

Recent research in 3D geological modelling reveals a 
strong trend toward combining open-source tools, ma-
chine learning, and structured geological logic. Many 
studies focus on hierarchical or stochastic modelling 
strategies, often relying on geological rules or learning 
from data (De La Varga et al., 2019; Feng et al., 2024; 
Marquetto et al., 2024). A wide range of studies em-
phasize hybrid methodologies that combine traditional 
interpretation with computational models, often using 
decision trees, support vector machines, or unsupervised 
clustering to improve reservoir prediction and structural 
modelling accuracy (Chen et al., 2024; Otmane et al., 
2025). While Shahbazkia et al. (2025) further demon-
strated the robustness of hybrid approaches like Quick 
Invariant Signature and Dynamic Time Warping (DTW) 
for handling noisy seismic data. These papers show a 
broader shift toward modular, flexible modelling work-
flows. Our approach in this article is simple, modular, 
deterministic and fully Python-based. It combines inter-
pretable seed-guided surface extraction with structured 
hexahedral meshing. Our emphasis was on bridging 
semi-automated interpretation with geobody extraction 
and volumetric mesh creation, and doing so entirely with 
accessible, open-source libraries.

2. Materials and methods

The methodology implemented for seismic horizon 
extraction implements the greedy propagation method 
(GP) to refine or generate geologically consistent sur-
faces that follow seismic reflectors with optimal conti-
nuity. This approach was motivated by the limitations of 
both manual interpretation, which is subjective and  
time consuming, and traditional automated methods, 
which often struggle in the presence of structural dis
continuities like faults or noisy reflections. Traditional 
methods include but are not limited to the methods such 
as Maximum Amplitude Picking, Zero-Crossing or 
Peak/Through Picking, Tracking Using Instantaneous 
Attributes and Dip-Steered Auto-picking (Gradient-
Based), which have been tested throughout our research 
as well (see Table 1). The proposed methodology ap-
plies a greedy algorithm in line with principles of  
greedy optimization strategies (Lu et al., 2016; Nie et 
al., 2023).

For seismic horizon picking in Gola field, several 
seismic attributes were utilized to enhance reflector con-
tinuity and improve the reliability of the greedy ap-
proach. The core attribute used during tracking was the 
seismic amplitude, specifically focusing on peak or 
trough continuity, depending on reflector polarity. How-
ever, amplitude alone can be ambiguous in areas of 
structural complexity, so this was supplemented with the 
instantaneous phase and local similarity (correlation) at-
tributes to guide the algorithm through low signal-to-
noise regions. Amplitude values were extracted directly 
from the seismic cube and used to identify local maxima 
or minima as target reflection events. To improve lateral 
continuity, local similarity (computed via a windowed 
normalized cross-correlation) was applied in the inline 
and crossline directions. This measure acted as a confi-
dence mask during DP pathfinding, preferring paths with 
consistent waveform shapes. Slope estimates were op-
tionally calculated using gradient filters, allowing the 
algorithm to enforce realistic dip constraints, especially 
important near faults. All attribute calculations and 
tracking were implemented in Python, allowing full re-
producibility and seamless integration with the automat-
ed interpretation framework. These attributes collective-
ly ensured robust and geologically valid horizon extrac-
tion even in structurally deformed or noisy seismic 
sections. The process begins with an initial approxima-
tion of the horizon, typically interpolated from sparse 
seed points or derived through a separate coarse tracking 
mechanism. This preliminary surface does not need to 
be precise; it merely guides the subsequent refinement. 
Around this surface, a sub-volume of seismic amplitudes 
is extracted, which is flattened relative to the initial hori-
zon to align local reflections. Within this sub-volume, 
the dynamic programming algorithm searches for a path 
that maximizes the global consistency of reflection 
events, typically focusing on peaks, troughs, or zero 
crossings, while accounting for local continuity and am-
plitude strength. The DP algorithm ensures a globally 
optimal solution by avoiding local minima that might 
mislead simpler tracking methods. A crucial strength of 
this approach lies in its ability to follow reflectors 
through complex structures, including faults and noisy 
regions, by treating horizon tracking as a global optimi-
zation problem. This is supported by the previous work 
by Yan & Wu (2021), who demonstrated how dynamic 
programming can overcome the shortcomings of slope-
based and correlation-based horizon tracking. Their for-
mulation interprets the horizon as an optimal path 
through a 2D or 3D cost function, where the cost is in-
versely related to desirable seismic features, such as 
high correlation or strong amplitude alignment. Our im-
plementation extends this idea by also incorporating lo-
cal slope guidance, where available, and by using effi-
cient neighbourhood correlation schemes to provide lo-
cal predictive depth shifts. The method has been 
enhanced to preserve determinism, ensuring repeatable 



A. Brcković, M. Cvetković, J. Kapuralić et al.� 170

Rudarsko-geološko-naftni zbornik 2025, 40 (5), pp. 167-178, https://doi.org/10.17794/rgn.2025.5.13

results, and to filter out physically implausible outliers in 
the resulting surface. Additionally, by transforming the 
extracted horizon into a point cloud and applying robust 
outlier filtering and smoothing (via interpolation and 
Gaussian filtering), we generate a final continuous sur-
face that is both geologically plausible and visually con-
sistent. Complementing this, recent advances in deep 
learning-based approach-es, as presented by Bi et al. 
(2021), offer a data-driven alternative using Relative 
Geologic Time (RGT) estimation. These methods pre-
dict RGT volumes from seismic data using encoder-de-
coder neural networks, allowing simultaneous interpre-
tation of horizons and faults. While such methods are 
powerful, especially when large training datasets are 
available, our dynamic programming method provides a 
transparent, interpretable, and user-guided alternative 
that does not rely on black-box models or extensive 
training data – making it particularly suitable for explor-

atory interpretation or projects with limited labelled 
datasets. Together, these methodologies establish a ro-
bust, reproducible, and interactive horizon extraction 
workflow that balances automation with interpretability 
and adapts well to varying geologic scenarios and data 
qualities.

The starting point of this workflow is the function that 
extracts horizon (see Appendix A.1), which implements 
a robust seed-based greedy algorithm. It propagates 
from one or more user-defined seed points, each defined 
by an inline, crossline, and depth value, and traverses 
neighboring traces to determine the best-matching hori-
zon location. The match is based on correlation of trace 
segments within a depth window to ensure that the local 
waveform shape is preserved. Importantly, the method 
does not match each trace to its immediate neighbor. In-
stead, it compares all segments to the reference pattern 
taken from the seed trace, promoting geological consist-

Table 1. Results of modification for automatic horizon picking functions, with increasing version number meaning  
better geological plausibility

Version Added Method Core Feature Advantage
v0 Max amplitude Simple peak detection on each trace Fastest and simplest baseline method

v1 Slope based Picks guided by local structural dip Improves structural realism  
and continuity

v2 DTW based Cross-trace reflector alignment Adapts to variable and non-flat 
reflectors

v3 DTW based refined Local peak alignment refined per trace Faster and more geologically realistic 
than full DTW

v4 Median filter Post-processing smoothing Produces smoother and cleaner 
horizons

v5 Median + Gaussian filter Dual-pass smoothing  
(median + Gaussian)

Further noise suppression and 
continuity improvement

v5.1 + Local continuity refinement
Adjusts picks based  
on 3×3 neighbourhood if deviation  
> threshold (e.g. 15 m)

Respects geological trends; tolerant  
to structural breaks

v5.2 Attribute masking (chaos-guided) Attribute thresholding to mask noisy 
picks

Suppresses chaotic or structurally 
incoherent reflectors

v5.3 Attribute + slope guidance Combines slope steering with attribute 
masking

Better tracking through dipping zones 
and faults

v6.0 Dynamic programming (DP) Global trace-by-trace optimization 
with amplitude + smoothness cost

Enforces horizon continuity across 
long lateral distances

v6.1 DP + slope jump limit Adds constraint on steep lateral depth 
jumps

Improves tracking in high-dip zones; 
avoids aliasing

v7 Local search window Narrows DP search to region near 
previous best pick

Greatly reduces compute time; more 
robust to vertical noise

v8 Outlier filtering + surface mesh Removes statistical outliers and 
interpolates smooth surface

Converts raw picks into clean, 
interpretable 3D surfaces

v9 Greedy propagation seed-based 
tracking (1D)

Tracks from seed in single direction 
using local peaks 

Anchors horizon to known markers 
(e.g. well tops); improves realism

v10 Greedy propagation seed-based 
tracking (2D)

Expands seed tracking to via local 
amplitude search

Propagates surfaces consistently  
from sparse seed input

v11 Seed + correlation + slope (GP)
Combines seed guidance, slope 
prediction, and trace similarity 
matching

Produces geologically plausible, 
slope-consistent, seed-anchored 
horizon surfaces
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ency across a larger area. Local slope estimates help 
steer the search direction to follow natural reflector 
trends, while a depth penalty discourages large vertical 
jumps, preventing the algorithm from locking onto 
strong but unrelated reflectors. These combined strate-
gies ensure that the extracted horizon honors both signal 
similarity and geological structure. After the horizon is 
extracted, it is typically noisy or contains small-scale de-
viations caused by trace-level inconsistencies or inter-
ference. The next step uses the filtering function to iden-
tify and remove extreme outlier values in the horizon 
surface. This step uses a z-score analysis to quantify 
how much each depth value deviates from the statistical 
trend of the rest of the surface. Traces that deviate be-
yond a user-defined threshold are masked, removing the 
influence of extreme values without erasing genuine 
geological variation. This smoothed horizon can now be 
safely used for surface reconstruction. To move from a 
scattered set of horizon points to a continuous surface, 
the function was defined (see Appendix A.2) that con-
verts the 2D DataArray (with inline, crossline, and 
depth) into a point cloud. It can apply an optional ampli-
tude threshold filter to reject regions with low signal 
strength, reducing noise propagation into the surface. 
The resulting dataset contains structured coordinates of 
interpreted horizon points, which form the basis for grid-
ding and smoothing. The core gridding and smoothing 
are performed with smoothing function (see Appendix 
A.3) that transforms irregular horizon point clouds into 
continuous surfaces. This function supports flexible in-
terpolation methods and applies rigorous quality control, 
including filtering by z-score and global depth deviation. 
Users can opt to fill missing gaps using the nearest-
neighbor interpolation and apply a Gaussian smoothing 
filter to gently remove noise while preserving regional 
structure. This creates clean, geologically plausible sur-
faces that are ready for visualization, modelling, or com-
parison with known horizons.

The seismic interpretation workflow developed here 
revolves around the automation and enhancement of one 
of the most fundamental tasks in subsurface characteri-
zation, which is horizon mapping. Through numerous 
modifications (see Table 1), it was determined which 
was the best approach for horizon extraction in our re-
search area. This workflow is structured to bring repeat-
ability, robustness, and geological plausibility into the 
interpretation process by combining dynamic program-
ming, local dip guidance, amplitude-based correlation, 
and surface smoothing techniques. The process ulti-
mately produces high-confidence horizon surfaces that 
reflect subsurface structure with minimal manual inter-
vention and are suitable for subsequent geological mod-
elling. To create geological model and interactive visu-
alization workflow in Python, a combination of special-
ized scientific, geospatial, and visualization packages 
was used (see Appendix B). Data was uploaded and 
processed by using mostly numpy (Harris et al., 2020), 

xarray (Hoyer & Hamman, 2017), pandas (The pan-
das development team, 2024) and scipy (Virtanen et 
al., 2020). Rasterio was used for reading and interpret-
ing the DMR surface from GeoTIFF format (Gillies et 
al., 2013). To build a 3D geological model, a structured 
grid was created by layering known surfaces from top to 
bottom: starting with the digital elevation surface 
(DMR), followed by a sequence of interpreted horizon 
surfaces, and finally a user-defined bottom surface. A 
regular grid was constructed horizontally (X and Y di-
rections), and for each layer, the corresponding depth (Z 
value) was calculated using surface data. Between each 
pair of adjacent surfaces, the model volume was filled to 
represent realistic geological intervals. This layered grid 
structure reflects the true geometry of the subsurface and 
can serve as a foundation for simulations, property mod-
elling, or further geological analysis. For the interactive 
geological model, pyvista was utilized (Sullivan & 
Kaszynski, 2019).

Together, these functions form a modular and adapt-
able workflow for seismic horizon interpretation. The 
workflow emphasizes clarity and determinism, with 
each step explicitly grounded in seismic amplitude pat-
terns and geological structure. It is equally suited for iso-
lated surface extraction or large-scale horizon mapping. 
Compared to manual picking, which is time-consuming, 
user-biased, and often inconsistent if multiple people are 
working on a bigger area, this approach provides rapid, 
reproducible, and explainable results in Gola field area 
and even in the wider are of research (see Figure 1). 
This methodology has been validated on the wider area 
of our Gola field, making it a powerful foundation for 
modern geological modelling.

In order to reliably showcase the spatial distribution 
of extracted horizon surfaces, a geological model of the 
research area has been built.

3. Results

3.1. Greedy propagation guided horizon extraction

The proposed methodology of local greedy propaga-
tion initially based on a dynamic programming ap-
proach, has been proven to reliably and semi-automati-
cally extract seismic horizons throughout the seismic 
volume. The goal was to extract seismic horizon surfac-
es in order to build an interactive 3D geological model 
of the research area using free and open-source Python 
tools.

The development of the horizon extraction workflow 
followed a stepwise refinement from simple amplitude-
based picking to more geologically realistic and robust 
methods (see Table 1). The earliest versions (v0–v1) fo-
cused on trace-wise strategies such as selection of maxi-
mum amplitude or inclusion of local dip information to 
follow structurally plausible trends. While these meth-
ods offered fast results, they were structurally inaccurate 
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and unreliable. Since they were based on the amplitude 
values and with no restraint, the horizon line was visibly 
connecting similar amplitude strengths on different loca-
tions and depths which lead to unexpected peaks in the 

line (see Figure 1). Subsequent versions (v2–v3) uti-
lized Dynamic Time Warping (DTW) to improve reflec-
tor alignment across traces and better handle lateral re-
flector variability, while versions v4–v5 incorporated 

Figure 2. Results of modification to automatic horizon picking functions with some of the modification (versions)  
from Table 1 being shown. Higher version numbers show better geological reliability in an automatic horizon  

extraction (more observable on the magnified panels in green).



173� Seed-Guided, Fault-Aware Horizon Tracking via Greedy Propagation for Geological Modelling

Rudarsko-geološko-naftni zbornik 2025, 40 (5), pp. 167-178, https://doi.org/10.17794/rgn.2025.5.13

smoothing and attribute-based masking to enhance sur-
face continuity and suppress noise from potentially cha-
otic or faulted zones. The improvement in horizon track-
ing seemed more stable but the depth was translated and 
thus the horizon detection was unreliable (see Figure 1). 
Subsequent versions (v6–v8) introduced dynamic pro-
gramming (DP) as a global optimization strategy, in 
which the horizon was treated as a path across traces that 
minimizes a cost function combining amplitude and 
smoothness. DP proved to be a powerful tool for enforc-
ing lateral continuity and global structural coherence. It 
greatly reduced the erratic behaviors seen in previous 
versions and the selected horizon is tracked well (see 
Figure 1). However, a critical limitation persisted: DP 
has no notion of geological relevance. It finds the best 
path, based on signal, but not necessarily the desired re-
flector. Seismic data often contains multiple reflectors of 
similar amplitude, and not all of them are stratigraphi-
cally or reservoir relevant. Without a way to guide DP 
toward a specific reflection of interest, the method could 
select unintended features, especially in layered or noisy 
intervals. This challenge was resolved by shifting to a 
seed-guided approach (v9–v11), which means that one 
or more known horizon points can be defined, either 
from well data or from visual inspection of strong reflec-
tors. The final method (v11) implemented greedy seed-
based propagation. From each seed point, the method 
expands outward by choosing the best-matching depth 
position in adjacent traces, guided by a reference pattern 
and informed by local dip. This design not only respects 
structural trends but ensures that only the desired reflec-
tor is followed, solving the ambiguity that DP struggled 
with. This ensured the possibility of extracting horizons 

for different well tops from well data, in total six of them 
(see Figure 2).

The decision to adopt greedy local propagation over 
global optimization was grounded in both methodologi-
cal and practical considerations. While DP ensures glob-
al continuity, it is computationally expensive, especially 
in 3D volumes or large 2D sections, and it lacks the flex-
ibility to adapt to faults, reflector terminations, or seed 
constraints. In contrast, greedy propagation is computa-
tionally lightweight and directionally flexible. Just by 
comparing the time needed for execution of the code for 
one (same) horizon extraction, it is visible how much 
easier the GP approach is for the end user (in our case 
around ten times faster). By expanding from seeds using 
local rules and updating only what is needed, it achieves 
high performance and scalability, especially when work-
ing in interactively defined zones. It also adapts natu-
rally to discontinuities, when a fault or reflector break is 
encountered, correlation falls below a set threshold, and 
the propagation halts. This makes the method fault-
aware without requiring explicit fault detection. This is a 
key strength, as many workflows either ignore faults or 
require a separate, often complex, fault-picking step. 
This is especially interesting for our research, as there 
are only few known and detected faults, while disconti-
nuities in reflections are usually due to the stratigraphi-
cal and structural complexity of the area.

To ensure the reliability of the extracted horizons, a 
thorough visual validation process was carried out using 
an interactive 2D seismic viewer (see Figure 3, Figure 
4). This custom-built tool allowed for a detailed inspec-
tion of both inline and crossline slices, overlaid with the 
interpreted horizon surfaces (see Appendix A.4). Each 

Figure 3. Automatically picked horizons that represent different well tops spatially propagated over the seismic volume
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horizon derived from well tops was tracked and system-
atically verified across the full seismic volume. By inter-
actively scrolling through inlines and crosslines, inter-
preters were able to confirm that the extracted surfaces 
consistently followed the expected reflector patterns and 
aligned with geological features observed in the well log 
data. This visual quality control step was crucial in iden-

tifying and correcting any inconsistencies, and it rein-
forced the accuracy and geological realism of the inter-
pretation workflow.

Using the same sparse set of seed points (between one 
and five seeds per desired horizon) derived from the test 
dataset, the proposed methodology successfully scaled 
to a broader seismic volume that encompassed the origi-

Figure 5. Horizon Z picked in a wider area that includes our research area, Gola field

Figure 4. Horizon Z picking results – tracking was done based on dynamic programming (DP) with the initial seeds  
from well data (well top position). The results were visually validated and tracking is within the seismic resolution  

as well as within the expected manual interpretation of the experts.
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nal area (see Figure 1, Figure 4). Despite being cali-
brated on a smaller subset (Gola field, 7 x 7 x 7 km seis-
mic volume), the greedy seed-based horizon tracking 
approach maintained geological consistency and struc-
tural coherence when applied to the larger dataset 
(broader seismic covered area containing Gola field, 25 
x 25 x 10 km seismic volume) (see Figure 1). This out-
come highlights the method’s robustness and generaliz-
ability. It demonstrates that a carefully selected seed, 
whether from well data or visual interpretation, can 
guide horizon extraction effectively across extended 
spatial extents, even when the seeds have local distribu-
tion. Such transferability is particularly valuable for re-
gional interpretation, where limited ground truth exists 
but broader coverage is desired.

3.2. Interactive geological model (Python-based)

One of the key outcomes of this work is the construc-
tion of an interactive 3D geological model of the re-
search area (Gola field) (see Figure 5). This model inte-
grates multiple data sources and is built on the extracted 
seismic horizon surfaces from this study, publicly avail-
able Digital Model of Relief (DMR) for topographic 

context, and geobodies previously extracted through 
semi-automated analysis (unpublished manuscript). 
These constructive elements (horizons, geobodies) were 
processed, interpreted, and visualized using fully open-
source Python tools. Unlike the usual modelling that re-
lied on proprietary software or merely visualization of 
the externally prepared models, this project demon-
strates a complete open-source workflow from uninter-
preted 3D seismic data to geological insight. The model 
provides an intuitive, high-resolution view of the sub-
surface architecture while the Python-based workflow 
offers established workflow for new data generation and 
insertion (see Appendix B). This is particularly valuable 
given that the area remains actively investigated, with 
limited previous modelling attempts. By offering both 
transparency and interactivity, the model enhances ac-
cessibility for geoscientists and stakeholders, while also 
giving a foundation for future updates as new data be-
come available.

4. Discussion
The developed methodology is centered around a 

semi-automated, seed-guided horizon tracking function 

Figure 6. Geological model of the Gola field retrieved with a full python framework, containg DMR (uploaded), horizon 
surfaces (automatically extracted with dynamic programming) and 14 geobodies presenting potential reservoir sandstones 

with different petrophysical properties (extracted with unsupervised learning methods (unpublished manuscript).
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that applies a greedy expansion logic (Lu et al., 2016). 
It mimics the cognitive process of human interpreters by 
matching local waveform patterns and following antici-
pated reflector dips. Specifically, the function extracts a 
waveform pattern from a seed location and performs 
trace-by-trace pattern matching using correlation within 
a defined depth window. A vertical deviation penalty en-
sures geological continuity, while optional slope steer-
ing biases the vertical search window to favor structur-
ally consistent reflectors. Faults are not explicitly detect-
ed as some methodology suggestes (Nayak & Nayak, 
2025), yet the method exhibits natural fault-tolerance.

Discontinuities are respected due to the local nature of 
the correlation window, a strict minimum correlation 
threshold, and the use of a visited mask to prevent back-
tracking or looping. This reflects how human interpreters 
hesitate or revise their interpretations near fault zones.

Originally motivated by the dynamic programming 
(DP) principle, the implementation evolved into a greedy 
expansion approach for both memory efficiency and geo-
physical realism. This concept has also been emphasized 
in seismic applications of dynamic programming by Yan 
& Wu (2021) and in general algorithmic optimization 
strategies like those described by Goldner et al. (2013) 
and Nie et al. (2023). The greedy approach focuses only 
on reflectors of interest, with no need to explore the entire 
volume. This stepwise evolution of the method is also 
reflected in the functional versions developed during this 
study. Early versions relied on basic amplitude picking 
and slope guidance. The final version implemented a 
greedy seed-guided expansion with slope and pattern 
constraints that offer the best balance between interpre-
tive control, geological consistency, and computational 
efficiency. The visual validation step ensured that each 
surface consistently honored the original seed and fol-
lowed the targeted log marker or reflector over the full 
seismic volume. Notably, the method generalized well, 
even when seeds were placed in a smaller test dataset, 
they were successfully used to extract geologically viable 
horizons in a much larger surrounding volume.

Strengths of the workflow lie in its reproducibility, 
interpretability, and full automation potential. With only 
a single seed, surfaces can be propagated through large 
volumes, as can be seen in our results. First, we adapted 
the methodology for Gola field and the results were geo-
logically plausible, especially given the seismic resolu-
tion that is around 30 m. Similar integration of automat-
ed horizon tracking into regional stratigraphic frame-
works has been explored in recent works as well (Chang 
et al., 2024; Feng et al., 2024; Marquetto et al., 2024). 
The method is especially attractive to both academia and 
industry due to its ability to run interactively in modern 
Python environments. The integration with geobody ex-
traction (unpublished manuscript), 3D surface recon-
struction, and topographic data further allows complete 
subsurface modelling, all within a free and open frame-
work. However, some challenges could be acquainted. 

They are primarily related to parameter tuning (e.g. 
depth window, correlation threshold, dip weighting), 
which can impact stability in structurally complex or 
noisy areas, but are easily modified. In regions with mul-
tiple competing reflectors or low signal-to-noise ratios, 
the method may still require expert supervision to adjust 
parameters or validate seed placement. Ambiguity in 
such areas is inherent to seismic interpretation and not 
unique to this method.

Ultimately, an interactive geological model was built, 
constructed entirely using open-source tools, from sur-
face horizons to previously extracted geobodies. This 
model represents the first fully open-source 3D geologi-
cal interpretation of the Gola field area, offering valuable 
insights for research, education, and ongoing industry 
exploration.

5. Conclusions

This study presents a fully open-source workflow for 
semi-automatic seismic interpretation and 3D geological 
modelling, applied for the first time to the Gola gas field. 
At its core is a seed-guided horizon extraction method 
that mimics human interpretation logic by applying local 
pattern matching, vertical continuity constraints, and op-
tional dip steering. The approach balances geological 
realism with computational efficiency through a greedy 
expansion algorithm, as a robust, scalable tool. The final 
implementation successfully tracks geologically consist-
ent surfaces through structurally complex zones without 
requiring full-volume analysis.

Our results show that even a single seed can initiate 
reliable surface propagation across large seismic vol-
umes, enabling reproducible, geologically plausible in-
terpretation. When combined with geobody extraction, 
topography, and interactive visualization, the method 
forms a complete modelling workframe. Although some 
parameter tuning is still necessary in complex geological 
settings, this limitation is minor thanks to the method’s 
transparency and adaptability. The resulting interactive 
3D model marks the first fully open-source structural 
representation of the Gola field and serves as a valuable 
resource for research, education, and exploration.
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SAŽETAK

Kartiranje seizmičkih horizonata temeljeno na inicijalnim točkama,  
uz toleranciju na rasjede, za potrebe geološkoga modeliranja

Plinsko polje Gola u sjeverozapadnome dijelu Dravske depresije smješteno je unutar strukturno složenoga naftnog susta-
va. Njegovi pješčani rezervoari pokazuju prostornu heterogenost uzrokovanu deltnom lepezastom sedimentacijom, što 
zahtijeva robusne alate za interpretaciju. Ovdje predstavljamo cjeloviti proces ekstrakcije seizmičkih horizonata i 3D 
geološko modeliranje, u potpunosti razvijen u Pythonu, a prilagođen ovom izazovu. Metoda se temelji na lokalno opti-
malnoj propagaciji (greedy algorithm) koja omogućuje praćenje horizonta s naglaskom na kontinuitet reflektora nadila-
zeći ograničenja ručne interpretacije i tradicionalnih automatskih algoritama u područjima s rasjedima ili šumom. Inici-
jalna aproksimacija dobiva se interpolacijom oko zadanih početnih točaka (seed), nakon čega se izdvaja podvolumen 
seizmičkih podataka koji se zatim splošti kako bi se refleksije poravnale. Unutar toga volumena algoritam pronalazi lo-
kalno optimalnu putanju maksimizirajući kontinuitet i amplitudu reflektora. Naša implementacija proširuje standardni 
okvir vođen dodatkom nagiba, lokalne korelacije i filtriranja odstupanja, čime se osigurava vjerna i ponovljiva geološka 
interpretacija. Dobivene površine horizonata zatim se interpoliraju, izglađuju i pretvaraju u 3D mreže koje se integriraju 
u interaktivni geološki model polja Gola. Prvi put u ovome istraživanom području geološki model izrađen je u potpuno-
sti korištenjem Python okruženja omogućujući automatiziranu ekstrakciju horizonta, vizualizaciju geoloških tijela i se-
izmičku interpretaciju u fleksibilnome, otvorenome sustavu.

Ključne riječi: 
seizmički horizont, geološki model, greedy algoritam, dinamičko programiranje, polje Gola
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