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Abstract

The Gola Gas field in the northwestern Drava Basin lies within the structurally complex petroleum system. Its sandstone
reservoirs exhibit spatial heterogeneity due to deltaic fan sedimentation, necessitating robust interpretation tools. We
present a fully Python-based seismic horizon extraction and 3D geological modelling workflow tailored to this challenge.
The method leverages the greedy propagation method to track horizons with optimal reflector continuity, overcoming
limitations of manual interpretation and traditional auto-pickers in faulted or noisy zones. An initial approximation is
provided via seed-guided interpolation. Around this surface, a seismic sub-volume is extracted and flattened to align
reflections. Within this volume, the greedy algorithm identifies a locally optimal path, maximizing continuity and am-
plitude strength. Our implementation extends the cost-based framework with slope guidance, local correlation, and
robust outlier filtering to ensure geologic realism and repeatability. Surfaces are converted to 3D meshes using interpola-
tion and smoothing, and the results are integrated into an interactive 3D geological model of the Gola field. For the first
time in the research area, the model was built entirely in Python, enabling automated horizon extraction, geobody visu-

alization, and seismic interpretation within a flexible, open-source environment.
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1. Introduction

The Gola Gas field, located in the northwestern Drava
Basin, lies within the “Deep Drava” petroleum system, a
structurally complex zone shaped by syn-rift tectonics
from the Early to Middle Miocene (Lu¢ié et al., 2001;
Paveli¢, 2001; Royden, 1988) (see Figure 1). Miocene
sediments, unconformably overlying Mesozoic base-
ment, include bioclastic limestones, lithic sandstones,
and fine-grained conglomerates deposited in marine and
deltaic environments. In the NW part of Gola, sandy
conglomerate sequences and bioclastic limestones dom-
inate, with evidence of high-density turbidity currents
depositing coarse detritus on delta slopes (Lowe, 1982).
Gas reservoirs occur mainly in Lower and Middle Mio-
cene clastic units at depths of 1800-3950 m (Saftié et
al., 2003), with lateral and vertical heterogeneity reflect-
ing variable depositional settings — from continental to
shallow marine. These units exhibit significant lithologi-
cal variability and reservoir quality, with bioclastic car-
bonates forming key gas-bearing intervals. Although
some conglomerates and sandstones lack fossils, their
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sedimentological features suggest subaqueous deposi-
tion in a proximal prodelta to shallow marine setting
(Tadej, 2011). The importance of the selected research
area lies in the fact that the deeper subsurface is known
for its gas bearing calcitic reservoirs in Early to Middle
Miocene and has therefore been explored (Tadej, 2011).
However, it has been established that the shallow, Upper
Miocene reservoir sandstones of the Gola field were de-
posited within the sedimentary channels and lobes of
prograding delta fans and are classified as stratigraphic
traps (Brekovié et al., 2024). The importance of deline-
ating sandstone reservoirs lies in the heterogeneity of
their spatial distribution and complex sedimentation in
deltaic fan environment. The reservoir properties, such
as porosity and permeability, have been determined us-
ing the core measurements (Tadej, 2011). However, due
to intertwined layering of sandstones and shales, the res-
ervoir connectivity is still to be determined and de-
scribed. The reservoir sandstones have been established
in well data (Brckovi¢ et al., 2024; Tadej, 2011). How-
ever, limitations of traditional seismic interpretation
methods provides the space for the application of ma-
chine learning methods assisted interpretation. This is
why the aim of the article is to present a reproducible
Python-based framework combining local greedy propa-
gation method for seismic interpretation, leading to the
geological modelling of the research area. Horizons
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Figure 1. Geographical position of the main research area (Gola field), broader area with seismic
data containing the main research area, wells position (well top data) on a map of central Europe
with Panonnian Basin System borders delineated.

themselves are not isolated artifacts but are essential in-
puts to stratigraphic modelling and the basis for under-
standing reservoir architecture. To illustrate the broader
geological utility of the extracted horizons, independent-
ly derived geobodies were integrated with stratigraphic
surfaces to construct a more comprehensive subsurface
model.

Seismic horizon interpretation is a basic step in geo-
logical modelling framework, which is essential for
characterizing structural and stratigraphic frameworks
in the subsurface. Traditionally, horizons are identified
manually by interpreters who follow coherent reflectors
in seismic sections. While this approach can provide
geologically valid results, it is often subjective, labor-
intensive, and limited in resolution and consistency, es-
pecially in large 3D seismic datasets or in structurally
complex areas with faults, noise, or stratigraphic discon-
tinuities (Yan & Wu, 2021). Recent methodological in-
novations have aimed to automate horizon picking to
overcome these limitations. Among them, slope-based
methods use local dip estimates to propagate horizon
picks (Wu & Fomel, 2018). While robust in relatively
continuous settings, they struggle with abrupt termina-
tions of horizons such as those formed by faulting. To
address this, Wu & Fomel (2018) proposed multigrid
correlations to enhance continuity, and Bugge et al.
(2019) introduced non-local trace matching to better
capture lateral reflection relationships in discontinuous
settings. A major leap in horizon extraction has come
with the use of deep learning. For instance, Bi et al.

(2021) developed a volume-to-volume convolutional
neural network that estimates a relative geologic time
(RGT) volume from seismic data. This RGT volume can
simultaneously capture horizons and faults by treating
them as isosurfaces and discontinuities, respectively.
The approach leverages synthetic training data and
structural similarity-based loss functions to generalize
across various seismic settings (Bi et al., 2021). Others
similarly used U-Net architectures for direct horizon ex-
traction from seismic amplitudes, showing that neural
networks can handle complex geometries and disconti-
nuities when trained appropriately (Tschannen et al.,
2020) . Despite the efficiency of deep learning, it re-
mains computationally expensive, data-hungry, and of-
ten difficult to interpret or control. As a complementary
alternative, dynamic programming (DP) offers an effi-
cient, deterministic method for extracting optimal seis-
mic paths and surfaces. Yan & Wu (2021) proposed a
DP-based refinement method that starts from a coarse
initial horizon and searches for the optimal amplitude-
consistent surface within a defined window. This ap-
proach does not rely on continuous slopes alone, making
it particularly adept at following reflectors through
structurally disturbed zones such as faults or unconform-
ities. Moreover, it integrates user guidance through
sparse control points or seed values, which enhances in-
terpretability and flexibility (Yan & Wu, 2021). In con-
trast to deep networks, dynamic programming is not
data-driven but instead exploits local correlation struc-
ture and global optimization to ensure geological real-
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ism. It is computationally lightweight and interpretable,
making it a valuable tool for semi-automatic workflows
or for use alongside machine learning where ground
truth is limited. By combining these approaches — tradi-
tional slope estimation, non-local matching, and dynam-
ic programming — modern seismic interpretation frame-
works can achieve unprecedented precision and reliabil-
ity in horizon tracking. This enables more robust
geobody extraction, reservoir modelling, and subsurface
analysis, especially in complex geologies where manual
or purely slope-based methods fail to trace seismic hori-
zons adequately.

Recent research in 3D geological modelling reveals a
strong trend toward combining open-source tools, ma-
chine learning, and structured geological logic. Many
studies focus on hierarchical or stochastic modelling
strategies, often relying on geological rules or learning
from data (De La Varga et al., 2019; Feng et al., 2024;
Marquetto et al., 2024). A wide range of studies em-
phasize hybrid methodologies that combine traditional
interpretation with computational models, often using
decision trees, support vector machines, or unsupervised
clustering to improve reservoir prediction and structural
modelling accuracy (Chen et al., 2024; Otmane et al.,
2025). While Shahbazkia et al. (2025) further demon-
strated the robustness of hybrid approaches like Quick
Invariant Signature and Dynamic Time Warping (DTW)
for handling noisy seismic data. These papers show a
broader shift toward modular, flexible modelling work-
flows. Our approach in this article is simple, modular,
deterministic and fully Python-based. It combines inter-
pretable seed-guided surface extraction with structured
hexahedral meshing. Our emphasis was on bridging
semi-automated interpretation with geobody extraction
and volumetric mesh creation, and doing so entirely with
accessible, open-source libraries.

2. Materials and methods

The methodology implemented for seismic horizon
extraction implements the greedy propagation method
(GP) to refine or generate geologically consistent sur-
faces that follow seismic reflectors with optimal conti-
nuity. This approach was motivated by the limitations of
both manual interpretation, which is subjective and
time consuming, and traditional automated methods,
which often struggle in the presence of structural dis-
continuities like faults or noisy reflections. Traditional
methods include but are not limited to the methods such
as Maximum Amplitude Picking, Zero-Crossing or
Peak/Through Picking, Tracking Using Instantaneous
Attributes and Dip-Steered Auto-picking (Gradient-
Based), which have been tested throughout our research
as well (see Table 1). The proposed methodology ap-
plies a greedy algorithm in line with principles of
greedy optimization strategies (Lu et al., 2016; Nie et
al., 2023).

For seismic horizon picking in Gola field, several
seismic attributes were utilized to enhance reflector con-
tinuity and improve the reliability of the greedy ap-
proach. The core attribute used during tracking was the
seismic amplitude, specifically focusing on peak or
trough continuity, depending on reflector polarity. How-
ever, amplitude alone can be ambiguous in areas of
structural complexity, so this was supplemented with the
instantaneous phase and local similarity (correlation) at-
tributes to guide the algorithm through low signal-to-
noise regions. Amplitude values were extracted directly
from the seismic cube and used to identify local maxima
or minima as target reflection events. To improve lateral
continuity, local similarity (computed via a windowed
normalized cross-correlation) was applied in the inline
and crossline directions. This measure acted as a confi-
dence mask during DP pathfinding, preferring paths with
consistent waveform shapes. Slope estimates were op-
tionally calculated using gradient filters, allowing the
algorithm to enforce realistic dip constraints, especially
important near faults. All attribute calculations and
tracking were implemented in Python, allowing full re-
producibility and seamless integration with the automat-
ed interpretation framework. These attributes collective-
ly ensured robust and geologically valid horizon extrac-
tion even in structurally deformed or noisy seismic
sections. The process begins with an initial approxima-
tion of the horizon, typically interpolated from sparse
seed points or derived through a separate coarse tracking
mechanism. This preliminary surface does not need to
be precise; it merely guides the subsequent refinement.
Around this surface, a sub-volume of seismic amplitudes
is extracted, which is flattened relative to the initial hori-
zon to align local reflections. Within this sub-volume,
the dynamic programming algorithm searches for a path
that maximizes the global consistency of reflection
events, typically focusing on peaks, troughs, or zero
crossings, while accounting for local continuity and am-
plitude strength. The DP algorithm ensures a globally
optimal solution by avoiding local minima that might
mislead simpler tracking methods. A crucial strength of
this approach lies in its ability to follow reflectors
through complex structures, including faults and noisy
regions, by treating horizon tracking as a global optimi-
zation problem. This is supported by the previous work
by Yan & Wu (2021), who demonstrated how dynamic
programming can overcome the shortcomings of slope-
based and correlation-based horizon tracking. Their for-
mulation interprets the horizon as an optimal path
through a 2D or 3D cost function, where the cost is in-
versely related to desirable seismic features, such as
high correlation or strong amplitude alignment. Our im-
plementation extends this idea by also incorporating lo-
cal slope guidance, where available, and by using effi-
cient neighbourhood correlation schemes to provide lo-
cal predictive depth shifts. The method has been
enhanced to preserve determinism, ensuring repeatable
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Table 1. Results of modification for automatic horizon picking functions, with increasing version number meaning

better geological plausibility

Version | Added Method Core Feature Advantage
v0 Max amplitude Simple peak detection on each trace | Fastest and simplest baseline method
vl Slope based Picks guided by local structural dip Improve§ stmctural I
and continuity
v2 DTW based Cross-trace reflector alignment TS IDVER SRS
reflectors
. Faster and more geologically realistic
v3 DTW based refined Local peak alignment refined per trace than full DTW
v4 Median filter Post-processing smoothing Pro.duces o ier el elrier
horizons
V5 Median + Gaussian filter Dual-.pass smoothmg Furt}.ler'nm.se suppression and
(median + Gaussian) continuity improvement
Adjusts picks based . .
vS.1 + Local continuity refinement on 3%3 neighbourhood if deviation GRS 70 I LR (Rl Gl
to structural breaks
> threshold (e.g. 15 m)
V5.2 Attribute masking (chaos-guided) Attrlbute thresholding to mask noisy Suppresses chaotic or structurally
picks incoherent reflectors
V5.3 At 4+ Slipe midhnes Comt?lnes slope steering with attribute | Better tracking through dipping zones
masking and faults
. . Global trace-by-trace optimization Enforces horizon continuity across
VUHL DI oIz (D15 with amplitude + smoothness cost long lateral distances
v6.1 TP g g ot Adds constraint on steep lateral depth Imp.roves. trgckmg in high-dip zones;
jumps avoids aliasing
. Narrows DP search to region near Greatly reduces compute time; more
v7 Local search window . . . .
previous best pick robust to vertical noise
. . Removes statistical outliers and Converts raw picks into clean,
+ . .
G it g <+ ke Tmesn interpolates smooth surface interpretable 3D surfaces
Vo Greedy propagation seed-based | Tracks from seed in single direction | Anchors horizon to known markers
tracking (1D) using local peaks (e.g. well tops); improves realism
Greedy propagation seed-based | Expands seed tracking to via local Propagates surfaces consistently
v10 . . .
tracking (2D) amplitude search from sparse seed input
Combines seed guidance, slope Produces geologically plausible,
vil Seed + correlation + slope (GP) | prediction, and trace similarity slope-consistent, seed-anchored
matching horizon surfaces

results, and to filter out physically implausible outliers in
the resulting surface. Additionally, by transforming the
extracted horizon into a point cloud and applying robust
outlier filtering and smoothing (via interpolation and
Gaussian filtering), we generate a final continuous sur-
face that is both geologically plausible and visually con-
sistent. Complementing this, recent advances in deep
learning-based approach-es, as presented by Bi et al.
(2021), offer a data-driven alternative using Relative
Geologic Time (RGT) estimation. These methods pre-
dict RGT volumes from seismic data using encoder-de-
coder neural networks, allowing simultaneous interpre-
tation of horizons and faults. While such methods are
powerful, especially when large training datasets are
available, our dynamic programming method provides a
transparent, interpretable, and user-guided alternative
that does not rely on black-box models or extensive
training data — making it particularly suitable for explor-

atory interpretation or projects with limited labelled
datasets. Together, these methodologies establish a ro-
bust, reproducible, and interactive horizon extraction
workflow that balances automation with interpretability
and adapts well to varying geologic scenarios and data
qualities.

The starting point of this workflow is the function that
extracts horizon (see Appendix A.1), which implements
a robust seed-based greedy algorithm. It propagates
from one or more user-defined seed points, each defined
by an inline, crossline, and depth value, and traverses
neighboring traces to determine the best-matching hori-
zon location. The match is based on correlation of trace
segments within a depth window to ensure that the local
waveform shape is preserved. Importantly, the method
does not match each trace to its immediate neighbor. In-
stead, it compares all segments to the reference pattern
taken from the seed trace, promoting geological consist-
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ency across a larger area. Local slope estimates help
steer the search direction to follow natural reflector
trends, while a depth penalty discourages large vertical
jumps, preventing the algorithm from locking onto
strong but unrelated reflectors. These combined strate-
gies ensure that the extracted horizon honors both signal
similarity and geological structure. After the horizon is
extracted, it is typically noisy or contains small-scale de-
viations caused by trace-level inconsistencies or inter-
ference. The next step uses the filtering function to iden-
tify and remove extreme outlier values in the horizon
surface. This step uses a z-score analysis to quantify
how much each depth value deviates from the statistical
trend of the rest of the surface. Traces that deviate be-
yond a user-defined threshold are masked, removing the
influence of extreme values without erasing genuine
geological variation. This smoothed horizon can now be
safely used for surface reconstruction. To move from a
scattered set of horizon points to a continuous surface,
the function was defined (see Appendix A.2) that con-
verts the 2D DataArray (with inline, crossline, and
depth) into a point cloud. It can apply an optional ampli-
tude threshold filter to reject regions with low signal
strength, reducing noise propagation into the surface.
The resulting dataset contains structured coordinates of
interpreted horizon points, which form the basis for grid-
ding and smoothing. The core gridding and smoothing
are performed with smoothing function (see Appendix
A.3) that transforms irregular horizon point clouds into
continuous surfaces. This function supports flexible in-
terpolation methods and applies rigorous quality control,
including filtering by z-score and global depth deviation.
Users can opt to fill missing gaps using the nearest-
neighbor interpolation and apply a Gaussian smoothing
filter to gently remove noise while preserving regional
structure. This creates clean, geologically plausible sur-
faces that are ready for visualization, modelling, or com-
parison with known horizons.

The seismic interpretation workflow developed here
revolves around the automation and enhancement of one
of the most fundamental tasks in subsurface characteri-
zation, which is horizon mapping. Through numerous
modifications (see Table 1), it was determined which
was the best approach for horizon extraction in our re-
search area. This workflow is structured to bring repeat-
ability, robustness, and geological plausibility into the
interpretation process by combining dynamic program-
ming, local dip guidance, amplitude-based correlation,
and surface smoothing techniques. The process ulti-
mately produces high-confidence horizon surfaces that
reflect subsurface structure with minimal manual inter-
vention and are suitable for subsequent geological mod-
elling. To create geological model and interactive visu-
alization workflow in Python, a combination of special-
ized scientific, geospatial, and visualization packages
was used (see Appendix B). Data was uploaded and
processed by using mostly numpy (Harris et al., 2020),

xarray (Hoyer & Hamman, 2017), pandas (The pan-
das development team, 2024) and scipy (Virtanen et
al., 2020). Rasterio was used for reading and interpret-
ing the DMR surface from GeoTIFF format (Gillies et
al., 2013). To build a 3D geological model, a structured
grid was created by layering known surfaces from top to
bottom: starting with the digital elevation surface
(DMR), followed by a sequence of interpreted horizon
surfaces, and finally a user-defined bottom surface. A
regular grid was constructed horizontally (X and Y di-
rections), and for each layer, the corresponding depth (Z
value) was calculated using surface data. Between each
pair of adjacent surfaces, the model volume was filled to
represent realistic geological intervals. This layered grid
structure reflects the true geometry of the subsurface and
can serve as a foundation for simulations, property mod-
elling, or further geological analysis. For the interactive
geological model, pyvista was utilized (Sullivan &
Kaszynski, 2019).

Together, these functions form a modular and adapt-
able workflow for seismic horizon interpretation. The
workflow emphasizes clarity and determinism, with
each step explicitly grounded in seismic amplitude pat-
terns and geological structure. It is equally suited for iso-
lated surface extraction or large-scale horizon mapping.
Compared to manual picking, which is time-consuming,
user-biased, and often inconsistent if multiple people are
working on a bigger area, this approach provides rapid,
reproducible, and explainable results in Gola field area
and even in the wider are of research (see Figure 1).
This methodology has been validated on the wider area
of our Gola field, making it a powerful foundation for
modern geological modelling.

In order to reliably showcase the spatial distribution
of extracted horizon surfaces, a geological model of the
research area has been built.

3. Results
3.1. Greedy propagation guided horizon extraction

The proposed methodology of local greedy propaga-
tion initially based on a dynamic programming ap-
proach, has been proven to reliably and semi-automati-
cally extract seismic horizons throughout the seismic
volume. The goal was to extract seismic horizon surfac-
es in order to build an interactive 3D geological model
of the research area using free and open-source Python
tools.

The development of the horizon extraction workflow
followed a stepwise refinement from simple amplitude-
based picking to more geologically realistic and robust
methods (see Table 1). The earliest versions (v0—v1) fo-
cused on trace-wise strategies such as selection of maxi-
mum amplitude or inclusion of local dip information to
follow structurally plausible trends. While these meth-
ods offered fast results, they were structurally inaccurate
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Figure 2. Results of modification to automatic horizon picking functions with some of the modification (versions)
from Table 1 being shown. Higher version numbers show better geological reliability in an automatic horizon
extraction (more observable on the magnified panels in green).

and unreliable. Since they were based on the amplitude
values and with no restraint, the horizon line was visibly
connecting similar amplitude strengths on different loca-
tions and depths which lead to unexpected peaks in the

line (see Figure 1). Subsequent versions (v2—v3) uti-
lized Dynamic Time Warping (DTW) to improve reflec-
tor alignment across traces and better handle lateral re-
flector variability, while versions v4—v5 incorporated
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Figure 3. Automatically picked horizons that represent different well tops spatially propagated over the seismic volume

smoothing and attribute-based masking to enhance sur-
face continuity and suppress noise from potentially cha-
otic or faulted zones. The improvement in horizon track-
ing seemed more stable but the depth was translated and
thus the horizon detection was unreliable (see Figure 1).
Subsequent versions (v6—v8) introduced dynamic pro-
gramming (DP) as a global optimization strategy, in
which the horizon was treated as a path across traces that
minimizes a cost function combining amplitude and
smoothness. DP proved to be a powerful tool for enforc-
ing lateral continuity and global structural coherence. It
greatly reduced the erratic behaviors seen in previous
versions and the selected horizon is tracked well (see
Figure 1). However, a critical limitation persisted: DP
has no notion of geological relevance. It finds the best
path, based on signal, but not necessarily the desired re-
flector. Seismic data often contains multiple reflectors of
similar amplitude, and not all of them are stratigraphi-
cally or reservoir relevant. Without a way to guide DP
toward a specific reflection of interest, the method could
select unintended features, especially in layered or noisy
intervals. This challenge was resolved by shifting to a
seed-guided approach (v9—v11), which means that one
or more known horizon points can be defined, either
from well data or from visual inspection of strong reflec-
tors. The final method (v11) implemented greedy seed-
based propagation. From each seed point, the method
expands outward by choosing the best-matching depth
position in adjacent traces, guided by a reference pattern
and informed by local dip. This design not only respects
structural trends but ensures that only the desired reflec-
tor is followed, solving the ambiguity that DP struggled
with. This ensured the possibility of extracting horizons

for different well tops from well data, in total six of them
(see Figure 2).

The decision to adopt greedy local propagation over
global optimization was grounded in both methodologi-
cal and practical considerations. While DP ensures glob-
al continuity, it is computationally expensive, especially
in 3D volumes or large 2D sections, and it lacks the flex-
ibility to adapt to faults, reflector terminations, or seed
constraints. In contrast, greedy propagation is computa-
tionally lightweight and directionally flexible. Just by
comparing the time needed for execution of the code for
one (same) horizon extraction, it is visible how much
easier the GP approach is for the end user (in our case
around ten times faster). By expanding from seeds using
local rules and updating only what is needed, it achieves
high performance and scalability, especially when work-
ing in interactively defined zones. It also adapts natu-
rally to discontinuities, when a fault or reflector break is
encountered, correlation falls below a set threshold, and
the propagation halts. This makes the method fault-
aware without requiring explicit fault detection. This is a
key strength, as many workflows either ignore faults or
require a separate, often complex, fault-picking step.
This is especially interesting for our research, as there
are only few known and detected faults, while disconti-
nuities in reflections are usually due to the stratigraphi-
cal and structural complexity of the area.

To ensure the reliability of the extracted horizons, a
thorough visual validation process was carried out using
an interactive 2D seismic viewer (see Figure 3, Figure
4). This custom-built tool allowed for a detailed inspec-
tion of both inline and crossline slices, overlaid with the
interpreted horizon surfaces (see Appendix A.4). Each
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Figure 5. Horizon Z picked in a wider area that includes our research area, Gola field

horizon derived from well tops was tracked and system-
atically verified across the full seismic volume. By inter-
actively scrolling through inlines and crosslines, inter-
preters were able to confirm that the extracted surfaces
consistently followed the expected reflector patterns and
aligned with geological features observed in the well log
data. This visual quality control step was crucial in iden-

tifying and correcting any inconsistencies, and it rein-
forced the accuracy and geological realism of the inter-
pretation workflow.

Using the same sparse set of seed points (between one
and five seeds per desired horizon) derived from the test
dataset, the proposed methodology successfully scaled
to a broader seismic volume that encompassed the origi-
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Figure 6. Geological model of the Gola field retrieved with a full python framework, containg DMR (uploaded), horizon
surfaces (automatically extracted with dynamic programming) and 14 geobodies presenting potential reservoir sandstones
with different petrophysical properties (extracted with unsupervised learning methods (unpublished manuscript).

nal area (see Figure 1, Figure 4). Despite being cali-
brated on a smaller subset (Gola field, 7 x 7 x 7 km seis-
mic volume), the greedy seed-based horizon tracking
approach maintained geological consistency and struc-
tural coherence when applied to the larger dataset
(broader seismic covered area containing Gola field, 25
x 25 x 10 km seismic volume) (see Figure 1). This out-
come highlights the method’s robustness and generaliz-
ability. It demonstrates that a carefully selected seed,
whether from well data or visual interpretation, can
guide horizon extraction effectively across extended
spatial extents, even when the seeds have local distribu-
tion. Such transferability is particularly valuable for re-
gional interpretation, where limited ground truth exists
but broader coverage is desired.

3.2. Interactive geological model (Python-based)

One of the key outcomes of this work is the construc-
tion of an interactive 3D geological model of the re-
search area (Gola field) (see Figure 5). This model inte-
grates multiple data sources and is built on the extracted
seismic horizon surfaces from this study, publicly avail-
able Digital Model of Relief (DMR) for topographic

context, and geobodies previously extracted through
semi-automated analysis (unpublished manuscript).
These constructive elements (horizons, geobodies) were
processed, interpreted, and visualized using fully open-
source Python tools. Unlike the usual modelling that re-
lied on proprietary software or merely visualization of
the externally prepared models, this project demon-
strates a complete open-source workflow from uninter-
preted 3D seismic data to geological insight. The model
provides an intuitive, high-resolution view of the sub-
surface architecture while the Python-based workflow
offers established workflow for new data generation and
insertion (see Appendix B). This is particularly valuable
given that the area remains actively investigated, with
limited previous modelling attempts. By offering both
transparency and interactivity, the model enhances ac-
cessibility for geoscientists and stakeholders, while also
giving a foundation for future updates as new data be-
come available.

4. Discussion

The developed methodology is centered around a
semi-automated, seed-guided horizon tracking function
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that applies a greedy expansion logic (Lu et al., 2016).
It mimics the cognitive process of human interpreters by
matching local waveform patterns and following antici-
pated reflector dips. Specifically, the function extracts a
waveform pattern from a seed location and performs
trace-by-trace pattern matching using correlation within
a defined depth window. A vertical deviation penalty en-
sures geological continuity, while optional slope steer-
ing biases the vertical search window to favor structur-
ally consistent reflectors. Faults are not explicitly detect-
ed as some methodology suggestes (Nayak & Nayak,
2025), yet the method exhibits natural fault-tolerance.
Discontinuities are respected due to the local nature of
the correlation window, a strict minimum correlation
threshold, and the use of a visited mask to prevent back-
tracking or looping. This reflects how human interpreters
hesitate or revise their interpretations near fault zones.
Originally motivated by the dynamic programming
(DP) principle, the implementation evolved into a greedy
expansion approach for both memory efficiency and geo-
physical realism. This concept has also been emphasized
in seismic applications of dynamic programming by Yan
& Wu (2021) and in general algorithmic optimization
strategies like those described by Goldner et al. (2013)
and Nie et al. (2023). The greedy approach focuses only
on reflectors of interest, with no need to explore the entire
volume. This stepwise evolution of the method is also
reflected in the functional versions developed during this
study. Early versions relied on basic amplitude picking
and slope guidance. The final version implemented a
greedy seed-guided expansion with slope and pattern
constraints that offer the best balance between interpre-
tive control, geological consistency, and computational
efficiency. The visual validation step ensured that each
surface consistently honored the original seed and fol-
lowed the targeted log marker or reflector over the full
seismic volume. Notably, the method generalized well,
even when seeds were placed in a smaller test dataset,
they were successfully used to extract geologically viable
horizons in a much larger surrounding volume.
Strengths of the workflow lie in its reproducibility,
interpretability, and full automation potential. With only
a single seed, surfaces can be propagated through large
volumes, as can be seen in our results. First, we adapted
the methodology for Gola field and the results were geo-
logically plausible, especially given the seismic resolu-
tion that is around 30 m. Similar integration of automat-
ed horizon tracking into regional stratigraphic frame-
works has been explored in recent works as well (Chang
et al., 2024; Feng et al., 2024; Marquetto et al., 2024).
The method is especially attractive to both academia and
industry due to its ability to run interactively in modern
Python environments. The integration with geobody ex-
traction (unpublished manuscript), 3D surface recon-
struction, and topographic data further allows complete
subsurface modelling, all within a free and open frame-
work. However, some challenges could be acquainted.

They are primarily related to parameter tuning (e.g.
depth window, correlation threshold, dip weighting),
which can impact stability in structurally complex or
noisy areas, but are easily modified. In regions with mul-
tiple competing reflectors or low signal-to-noise ratios,
the method may still require expert supervision to adjust
parameters or validate seed placement. Ambiguity in
such areas is inherent to seismic interpretation and not
unique to this method.

Ultimately, an interactive geological model was built,
constructed entirely using open-source tools, from sur-
face horizons to previously extracted geobodies. This
model represents the first fully open-source 3D geologi-
cal interpretation of the Gola field area, offering valuable
insights for research, education, and ongoing industry
exploration.

5. Conclusions

This study presents a fully open-source workflow for
semi-automatic seismic interpretation and 3D geological
modelling, applied for the first time to the Gola gas field.
At its core is a seed-guided horizon extraction method
that mimics human interpretation logic by applying local
pattern matching, vertical continuity constraints, and op-
tional dip steering. The approach balances geological
realism with computational efficiency through a greedy
expansion algorithm, as a robust, scalable tool. The final
implementation successfully tracks geologically consist-
ent surfaces through structurally complex zones without
requiring full-volume analysis.

Our results show that even a single seed can initiate
reliable surface propagation across large seismic vol-
umes, enabling reproducible, geologically plausible in-
terpretation. When combined with geobody extraction,
topography, and interactive visualization, the method
forms a complete modelling workframe. Although some
parameter tuning is still necessary in complex geological
settings, this limitation is minor thanks to the method’s
transparency and adaptability. The resulting interactive
3D model marks the first fully open-source structural
representation of the Gola field and serves as a valuable
resource for research, education, and exploration.
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SAZETAK

Kartiranje seizmickih horizonata temeljeno na inicijalnim to¢kama,
uz toleranciju narasjede, za potrebe geoloskoga modeliranja

Plinsko polje Gola u sjeverozapadnome dijelu Dravske depresije smjesteno je unutar strukturno slozenoga naftnog susta-
va. Njegovi pje$cani rezervoari pokazuju prostornu heterogenost uzrokovanu deltnom lepezastom sedimentacijom, §to
zahtijeva robusne alate za interpretaciju. Ovdje predstavljamo cjeloviti proces ekstrakcije seizmickih horizonata i 3D
geolosko modeliranje, u potpunosti razvijen u Pythonu, a prilagoden ovom izazovu. Metoda se temelji na lokalno opti-
malnoj propagaciji (greedy algorithm) koja omoguéuje pracenje horizonta s naglaskom na kontinuitet reflektora nadila-
zedi ogranicenja ru¢ne interpretacije i tradicionalnih automatskih algoritama u podru¢jima s rasjedima ili Sumom. Inici-
jalna aproksimacija dobiva se interpolacijom oko zadanih pocetnih to¢aka (seed), nakon Cega se izdvaja podvolumen
seizmickih podataka koji se zatim splosti kako bi se refleksije poravnale. Unutar toga volumena algoritam pronalazi lo-
kalno optimalnu putanju maksimizirajuc¢i kontinuitet i amplitudu reflektora. Naga implementacija pros$iruje standardni
okvir voden dodatkom nagiba, lokalne korelacije i filtriranja odstupanja, ¢ime se osigurava vjerna i ponovljiva geoloska
interpretacija. Dobivene povr$ine horizonata zatim se interpoliraju, izgladuju i pretvaraju u 3D mreZe koje se integriraju
u interaktivni geoloski model polja Gola. Prvi put u ovome istrazivanom podrudju geoloski model izraden je u potpuno-
sti koriStenjem Python okruzenja omogucujuci automatiziranu ekstrakciju horizonta, vizualizaciju geoloskih tijela i se-
izmicku interpretaciju u fleksibilnome, otvorenome sustavu.

Kljuéne rijedi:
seizmicki horizont, geoloski model, greedy algoritam, dinami¢ko programiranje, polje Gola
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