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Abstract
In this paper, basic structural stability phenomena are described. After some general comments about stability in 
the fi eld of civil engineering, four elementary sources of nonlinearity are mentioned: of equilibrium equations, strain 
(geometry) relations, material (stress-strain) law, force and displacement boundary conditions. Four fundamental 
 stability models are analysed, both ideal (perfect) and with geometric imperfection. Besides geometrically exact theory, 
initial post-buckling behaviour and linearization are briefl y sketched. This paper is concluded with comments about the 
infl uence of plasticity.
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1. Introduction

With strong development of civil engineering, struc-
tures are becoming taller, longer, lighter and more slen-
der. Almost every day, engineers reach new spans or 
height records, with the organization of the building site 
and short terms of construction that are just stunning. Be-
cause of large structural slenderness, stability problems 
become very important and often relevant for design. 
Therefore, knowledge of the structural stability theory is 
crucial for understanding and critical usage of modern 
norms and regulations. Furthermore, it is essential for the 
good design of new, and proper strengthening of existing 
buildings. In Figure 1, two examples of structural stabil-
ity problems are given. In the fi rst example, possible 
buckling of a large dome (see Figure 1a), including a 
reinforced concrete shell with large openings (see Figure 
1b), and a reticulated part made of steel (see Figure 1c) 
can be seen. In the second example, we enclose the sta-
bility loss of a large steel tube compression zone in bend-
ing, with very fi ne local fi nite element mesh, used to cap-
ture short waves of the fundamental buckling mode (see 
Figures 1d-f). Effi ciency of any structural system de-
pends on shapes and sizes of structural elements and the 
behaviour of materials used. Between many possibilities, 
architects and engineers choose the appropriate elements 
and materials to maintain the designed shape for all load-
ing combinations during planned structural life, such that 

safety and usage are never in question. If a structural sys-
tem resists loads developing compressive forces, stiff-
ness (especially in bending), is always reduced. If this 
reduction is large, we are faced with a loss of structural 
stability. In fact, this is a loss of the equilibrium position, 
usually followed by large displacements (primarily) and 
plastic deformations (secondarily). During, or at the end 
of this process, partial or complete structural failure is 
quite common. Today, we have good codes (Galambos 
and Surovek, 2008) and computational strategies (Wrig-
gers, 2008) to avoid such a scenario. However, we should 
be very careful. Stability problems are (sometimes ex-
tremely) nonlinear and it is not often easy to handle cal-
culations and obtain the correct solution. Moreover, be-
cause we cannot guarantee a unique solution, it is more 
diffi cult to solve a nonlinear model than a linear one. 
Therefore, such problems are often reserved for special-
ists in the area of computational structural stability. Brief-
ly, they use carefully selected step-by-step procedures to 
obtain equilibrium curves and traverse critical (bifurca-
tion and limit) points (Crisfi eld, Vol. 1, 2001). Some-
times, during calculations, very diffi cult phenomena 
arise, such as snap-through and snap-back. To pass these 
regions of the curve, basic nonlinear procedures are usu-
ally extended with additional strategies, like line-search 
and arc-length (Crisfi eld, Vol. 2, 2001). In spite of great 
success, black-box usage of nonlinear software is not al-
ways possible. Specialists must know the core of algo-
rithms used and often manually give promising direction 
during calculations to prevent diverging of the numerical 



Jaguljnjak Lazarević, A.; Uroš, M.; Čengija, A. 38

The Mining-Geology-Petroleum Engineering Bulletin, 2017, pp. 37-47 © The Author(s), DOI: 10.17794/rgn.2017.2.5

process. In the theory of computation, this scenario is of-
ten called man (human)-in-the-loop.

2. Sources of nonlinearity

Four groups of equations usually describe the classi-
cal linear boundary value problem of elasticity: equilib-
rium equations, strain or geometry relations, constitutive 
model and (force and displacement) boundary condi-
tions. All groups are potential sources of nonlinearity. 
We will not develop equations in detail, but will rather 
use the appropriate examples to describe the effect of 
nonlinear behaviour, if separately induced in every 
group of equations. Here, we must emphasize, all equa-
tions are nonlinear in nature, but in the case of weak 
nonlinearity they can be linearized. In addition, this is a 
subject of engineering judgement, not computation.

2.1. Nonlinearity of equilibrium equations

Let us consider a simply supported frame loaded by 
two vertical forces V and one horizontal force H. The 
height and span of the frame are h and L. Loads are 
placed at the joints of the frame (see Figure 2a). Cross 
sections of the beam and columns are of a constant rec-

tangular shape. In the linear case, the vertical reactions 
are V ± Hh/2 and thehorizontal reactions are H/2. The 
moment diagram is linear, with maximum values of 
Hh/2 at the joints of the frame beam (see Figure 2b). In 
the nonlinear case, global horizontal displacement of the 
frame Δ and local column deviation δ are large enough to 
amplify linear moments (see Figure 2c). Maximum joint 
values are now HDh + VDΔ and the local extreme along 
the columns is VDδ (see Figure 2d). The forces HD, VD 
and HL, VL are right and left nonlinear horizontal and 
vertical reactions respectively. Note, unlike the linear 
case, horizontal reactions are no longer equal. The ad-
ditional effect is nonlinear moment distribution along 
the frame. During beam and column design, all phenom-
ena must be taken into account. In the case of signifi cant 
differences between defl ections and moments (say 30% 
or more), the frame is usually stiffened by braces and 
walls to reduce lateral displacement. This effi cient engi-
neering approach is often used for any laterally fl exible 
frame structure (such as in a slender high-rise building).

2.2. Nonlinearity of strain (geometry) relations

If an arbitrary rigid body is rotated by a large angle, 
say π/2, small deformations of linear strain tensor cannot 

a) b) c)

d) e) f)

Figure 1: Two practical civil engineering problems of stability 
(Lazarević at al., 2010; URL: http://www.grad.unizg.hr/_download/repository/ts.pdf)
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represent the strain condition of the body. If the body 
point A(X,Y) is marked, coordinates of the new position 
are x = –Y and y = X (see Figure 3a). Because this rota-
tion is rigid, all deformation components must be zero. 
But that

  (1)

  (2)

  (3)

clearly means that longitudinal deformations (2) do not 
correctly respond. We usually solve this confl ict using 
another measure of deformation. For example, in the 
case of the Green strain tensor, the new longitudinal 
strain measure is defi ned as:

  (4)

where (see Figure 3b):

  (5)

If deformations are small, the quadratic terms in equa-
tion (4) can be dropped, X becomes x, and we recover 
equation (1). Now, it is easy to see that

  (6)

It is not diffi cult to obtain expressions for the remain-
ing deformations Eyy and Ezz (Bonet and Wood, 2008), 
and to show that in our case Eyy = 0 and Eyz = 0, which is 
the correct behaviour of planar rigid body rotation. By 
the way, treatment of large rotations is still one of the 

Figure 2: Eff ect of nonlinearity in equilibrium equations (Trahair, 1993)

Figure 3: Planar example of a rigid large rotation problem (Bonet and Wood, 2008)

a) b)
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major challenges in nonlinear computational mechanics 
(Belytschko at al., 2009).

The equations of geometry are closely related to the 
so-called conditions of compatibility. They describe re-
lations between strain components during deformation 
of the body. Simply stated, during the deformation pro-
cess continuum must remain continuum. If such a condi-

Figure 4: Separation and penetration of elements during 
the deformation process (Lazarević at al., 2010; URL: 

http://www.grad.unizg.hr/_download/repository/ts.pdf)

Figure 5: Result of a simple tensile steel test (Lazarević at al., 2010; 
URL: http://www.grad.unizg.hr/_download/repository/ts.pdf)

Figure 6: Sway buckling mode with a large buckling length 
(Bažant and Cedolin, 2003)

tion is violated, as is in the case of penetrations, gaps or 
openings between structural elements (see Figure 4), 
tensile (or compressive) forces between them must be 
excluded. This problem is nonlinear in nature, as exclu-
sion immediately means an equilibrium unbalance, 
which must be corrected by some iterative process.

2.3.  Nonlinearity of a constitutive model 
(hypothesis)

Linear constitutive models are based on the linear de-
pendence between stresses and corresponding strains 
(the famous Hooke law). If larger stresses are expected, 
nonlinear elasticity or plasticity effects must often be 
taken into account. There are many stress-strain rela-
tions (curves), used to model various material nonlinear-
ities. Curves are usually based on standardized experi-
ments. One of them is a simple tensile steel test. Figure 
5 shows the result of such an experiment, that forms the 
basis for a commonly used elastic-perfectly plastic ma-
terial model. Civil engineering structures are sometimes 
(even cyclically) stressed beyond their limit point and 
such strategies are commonly used to capture this be-
haviour. Notice in the fi gure, plasticity effects occur 
much earlier than the large strain effects described in the 
previous paragraph.

2.4. Nonlinearity in force boundary conditions

If a frame load is suffi ciently large and lateral stiff-
ness is small enough, a very interesting buckling mode 
with change in load direction arises. This phenomenon is 
known as the follower force and simply shows that a 
sway frame column may have a buckling length larger 
than 2l (see Figure 6). Notice that two equal and oppo-
site horizontal forces H must appear, to maintain equi-
librium of the left joint and the whole frame. These com-
ponents make joint resultants (with the force P) inclined, 
which is the reason for the large buckling length of the 
right column.
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Another interesting problem of this category is the 
stability of the planar circular ring. Various assumptions 
about load positions after bucking give different critical 
pressures qcr (see Figure 7). See from the picture, it is 
not irrelevant whether the load is always perpendicular 
to the tangent of the ring, passes through the ring origin, 
or stays parallel with the initial position.

2.5.  Nonlinearity due to displacement boundary 
conditions

Another source of nonlinear behaviour is related to 
boundary constraints, which changes with the deforma-
tions of the system. An example is possible contact be-
tween two horizontal bars of lengths l1 and l2 (see Figure 
8). Only the left bar is loaded by the longitudinal force . 
Bars are initially separated and behave as individual ele-
ments until contact is reached. This happens when a 
loaded bar is stretched enough to touch the right bar. In 
other words, displacement u1 and elongation Δ are so 
large to make contact. After that, the right bar is pressed, 
displacement u2 is not zero and the system become stiff-
er. This obvious change of the static system (two cantile-
vers transform into one clamped bar), is a source of non-
linear behaviour.

3. Four fundamental cases

Despite the fact that there are numerous elastic stabil-
ity problems, thanks to the work of W.T. Koiter (Hjelm-
stad, 2005 and van der Heijden, 2009), it is possible to 
distinguish four fundamental cases: stable and unstable 
symmetric bifurcation, asymmetric bifurcation and limit 
point behaviour. This classifi cation is important because 
it classifi es not only ideal, but also imperfect elastic sys-
tems. Let us briefl y describe each case, using simple 
models with one rotational degree of freedom θ (Hjelm-
stad, 2005). The solutions presented are geometrically 
exact, because assumptions such as sin θ ≈ θ or cos θ ≈ 1 
are not used. The fi rst model is described in detail and 
others are only briefl y sketched.

3.1. Stable symmetric bifurcation

Consider a straight rigid column (cantilever) of height 
l, elastically restrained by a linear rotational spring of 
stiffness k (see Figure 9a). The column is loaded by a 
vertical force P at the top. In the straight position θ = 0 
spring is unstressed. This undeformed position is obvi-
ously possible, because it satisfi es the vertical equilibri-
um of the model. However, the balance at a certain angle 
also exists (see Figure 9b). From the moment equilibri-
um of the inclined (deformed) position about point A, we 
get Pl sin θ = kθ and P = k/l(θ/sin θ). Of course, force P  
always remains straight.

Vertical and curved thick lines on Figure 9c are the 
equilibrium functions described. Notice two important 
properties of the solution. First, one of the functions is 
nonlinear and the principle of superposition is not valid 
any more. Second, the solution is not unique, because 

Figure 7: Various stability problems of planar circular ring (Alfutov, 2000)

Figure 8: Simple two bar problem 
(Wriggers, 2008)

Figure 9: Stable symmetric bifurcation: a) model, b) deformed position, c) equilibrium curves 
(Hjelmstad, 2005)
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two equilibrium functions exist. Furthermore, three an-
gles, 0 and ±π/2 correspond to one force level, say P = 
π/2(k/l). In addition, there is special point called the bi-
furcation point. It is an intersection of equilibrium func-
tions. The corresponding load level is known as critical 
force Pkr = k/l. It is not possible, without the theorem of 
minimum potential energy, to decide about the character 
of equilibrium positions, whether they are stable or un-
stable (Simitses and Hodges, 2006). For this example, it 
is easy to prove that the straight position is stable before 
and unstable after the bifurcation point. Physically, sta-
bility (instability) means resistance (non-resistance) to a 
load increase. Inclined positions, characterized by the 
left and right equilibrium branch that emanate from the 
bifurcation point, are always stable. Exactly at the bifur-
cation point, equilibrium is also stable (Čengija, 2016). 
With these features, we talk about the bifurcation or 
branching point of the fi rst kind. The region before bi-
furcation is called pre-critical and after that post-critical. 
The loading and unloading direction always lies on the 
same stable curve, without executing jumps. Also, no-

tice the horizontal tangent at the critical point and sym-
metry with respect to the loading axis, of both, curve and 
post-critical (stable) behaviour. Therefore, this phenom-
enon is known as the stable symmetric bifurcation. It is 
easy to see that curves are theoretically equal, with the 
same probability of realisation. In reality, even small im-
perfections decide which branch will be favoured. Simi-
lar behaviour exists in axially loaded slender beams and 
thin plates, both without imperfections.

3.2. Unstable symmetric bifurcation

The second example consists of a rigid vertical bar, 
hinged at the bottom  and elastically restrained at the top 
B by a horizontal spring of stiffness k. The model is 
loaded by a vertical force P which always remains 
straight (see Figure 10a). Four equilibrium positions 
are now possible: three vertical and one inclined (see 
Figure 10b). The moment equation about point A is 
Pl sin θ = kl sin θ l cos θ. This equation is easily rear-
ranged to obtain (P – kl cos θ) sin θ = 0. So, the possi-

Figure 10: Unstable symmetric bifurcation: a) model, b) deformed position, c) equilibrium curves (Hjelmstad, 2005)

Figure 11: Asymmetric bifurcation: a) model, b) deformed position, c) equilibrium curves (Hjelmstad, 2005)
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bilities are sin θ =0 or P – kl cos θ = 0. The solutions of 
the fi rst equation are 0 and ±π and of the second equation 
P = kl cos θ. All functions are drawn on Figure 10c. The 
critical force at the bifurcation point of practical impor-
tance is kl. As in the previous example, the initial posi-
tion is stable before and unstable after the bifurcation 
point, but contrary to the fi rst model, the inclined posi-
tion is always unstable. In such conditions, the branch-
ing point is called the bifurcation point of the second 
kind. At that point, the tangent on the equilibrium curve 
is also horizontal. But, after the point is reached, the sys-
tem suddenly jumps to a reversed stable vertical position 
given by π or –π. As in the previous case, because of the 
solution symmetry (in the shape and character of stabil-
ity), small real imperfections govern the direction of the 
motion. Because post-critical behaviour is unstable, this 
problem is known as the unstable symmetric bifurcation. 
This is the behaviour of deep arches, cylindrical panels 
and stiffened plates, not infl uenced by imperfections.

3.3. Asymmetric bifurcation

This phenomenon can also be described by a rigid 
vertical bar hinged at point A, but now additionally re-
strained by an inclined spring from point B to the top of 
the bar. Spring stiffness is k again. As usual, the vertical 
force P is acting at the top of the column (see Figure 
11a). Vertical equilibrium positions are 0 and ±π again, 
while the inclined position (see Figure 11b) is charac-
terized by αkl[1–λ(θ)]/tan θ (see Figure 11c), where α is 
a fraction of the bar length and λ(θ) = L(0)/L(θ) is a ratio 
of the undeformed to the deformed length of the spring. 
Critical force is α2kl/(1+α2) and the corresponding tan-
gent is not horizontal. The right side of the equilibrium 
curve is unstable and the left one is stable. Obviously, 
the response of this example is not symmetric. There-
fore, this problem is known as the asymmetric bifurca-
tion. The corresponding branching point is called the 
bifurcation point of the third kind. After reaching that 
point, the system executes a sudden jump to the reversed 
vertical position on the right, given by θ = π. The system 

can be deformed to the left, only if the right side is prop-
erly restrained. This type of behaviour is typical for 
frames and cylindrical or spherical shells without imper-
fections. At the end, notice the maximum of the equilib-
rium function on the left side of Figure 11c. It is called 
the limit point and it is important for the example that 
follows.

3.4. Limit point behaviour

This example is different from the three previous 
 cases. It is well described by a simple, elastically sup-
ported truss (see Figure 12a). Bars are inclined and rig-
id. The left bar is hinged at the bottom and the right is 
vertically fi xed and horizontally restrained by the linear 
spring of stiffness k. The truss is loaded by a vertical 
force P at the top. In the initial position, the spring is 
unstressed. From the moment equation about point A, 
we get P = 4kl [1 – cos α / cos θ]. This is the only equi-
librium curve, as u = 0 (vertical axis) is not in the equi-
librium position anymore (see Figure 12b). The curve is 
plotted using the additional relations sin θ = (h – u)/l,  
cos α = a / l and cos θ = [1 – ((h – u) / l)2]1/2, which are 
obvious from the fi gure. Since only one equilibrium 
function exists, the branching (bifurcation) point never 
appears. Stability is lost at the so-called limit point and 
the pre-critical part of the curve is not straight. In the 
theory of stability, this phenomenon is known as the 
snap through. Such behaviour is characteristic of shal-
low arches and shells. At the end of this section, let us 
mention that bifurcation and limit points have a unique 
name - critical points. After reaching that point, the ini-
tial position of any model is no longer stable.

4. Initial post-buckling behaviour

It is possible to simplify equilibrium equations using 
the Taylor series expansion in the vicinity of θ = 0. The 
main idea is to use the truncated series of trigonometric 
functions. Applying only the fi rst two coeffi cients of the 
series, equilibrium equations of the preceding examples 

Figure 12: Limit point behaviour: a) model and deformed position, b) equilibrium curve (Lazarević at al., 2010; 
URL: http://www.grad.unizg.hr/_download/repository/ts.pdf)
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are: P = k / l (1 + θ2/6), for stable symmetric bifurcation, 
P = kl (1 – θ2/2), for unstable symmetric bifurcation, 
P = αγkl (1 – 3/2γθ), for asymmetric bifurcation and 
P = 2kl (α2 – θ2) θ, for limit point behaviour. For simpli-
fi cation purposes, in the third equation we use the con-
stant γ = α/(1 + α2), while in the last equation relations 
α = h / l and θ = (h – u) / l are used for plotting P versus  
u (not θ). Approximate solutions (together with exact 
curves from the previous section) are sketched in Figure 
13. This approach is known as second order theory, as 
(at most) quadratic function is enough to approximate 
equilibrium in close vicinity of the initial position. In the 
third example, even linear function is a satisfactory solu-
tion (see Figure 13c). (That’s why we used the phrase ”at 
most”.) Also, a relatively crude approximation in the 
fourth example is the consequence of a large angle α 
(deep truss, α = π/4). In the case of a shallow truss, 
matching would be much better. Because, it is possible 
to obtain the equilibrium equation as the fi rst derivative 
of the energy functional, and the character of that equi-
librium examined by the second derivative, obviously, 
for the quadratic equilibrium function to exist, energy 
must be of the fourth order (Godoy, 2000). Therefore, 
for initial post-buckling behaviour, it is suffi cient to ap-
proximate energy by:

 

  (7)

From this equation, some general conclusions can be 
made. Constants a0 and b0 have no infl uence on the solu-
tion, as they vanish by the fi rst derivative. If a1 ≠ 0 and  

tions. Finally, some computer codes from the seventies 
(still in use), are based on series expansions, not on true 
solutions. For deeper understanding of such software, 
knowledge about this strategy is very useful.

5. Linearization: Euler critical force

Sometimes, it is very diffi cult (even numerically) to 
obtain the equilibrium function of some complicated 
model. It is easier to fi nd the critical point (θkr, Pkr) only. 
Furthermore, this point is the basis for many design for-
mulas of national standards. The idea is to use the most 
linear coeffi cient in the Taylor series expansion, but 
equilibrium is still set on the deformed model. Now, the 
approximation is valid only for a “very small” θ (not just 
“small” as in the previous section), and we are talking 
about linearization in the theory of elastic stability. As-
sociated energy is a quadratic function of θ and it is pos-
sible to access the undeformed (straight) position only. 
Additionally, we can fi nd the bifurcation point and initial 
form of the instability-buckling shape. The associated 
critical force is known as the Euler critical force, accord-
ing to the contribution of the great mathematician L. Eu-
ler. Furthermore, we know that before the critical point, 
the undeformed confi guration is stable and after that 
point, it is unstable. The behaviour exactly at the bifur-
cation point and of the deformed confi guration after that 
point is not known anymore. This is because of a very 
crude approximation strategy. Because of that, we are 
talking about indifferent equilibrium conditions at and 
after the critical point. The equilibrium function that 
emanates from the bifurcation point is a simple horizon-

Figure 13: Exact and approximate equilibrium curves of four fundamental cases 
(Lazarević at al., 2010; URL: http://www.grad.unizg.hr/_download/repository/ts.pdf)

Figure 14: Equilibrium curve after linearization

b1 ≠ 0 the vertical axis is not the equilibrium axis any-
more. The linear stiffness k depends on a2 > 0. The re-
maining coeffi cients govern post-critical behaviour of 
the model. Thus, if a3 = 0, bifurcation is symmetric (sta-
ble or unstable, there is no decision yet), and for a3 ≠ 0 it 
is asymmetric. Finally, if (a4 + b4) > 0 bifurcation is sta-
ble and for (a4 + b4) < 0 it is unstable. This famous Koiter 
classifi cation is relatively general and is crucial for un-
derstanding, not only ideal, but also imperfect systems. 
Moreover, thanks to this approach, it is easy to distin-
guish the infl uence of every coeffi cient on the stability. 
Such conclusions are not possible from the exact solu-
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tal line and it is the same for the fi rst three examples of 
the previous section (see Figure 14). Obviously, all the 
post-critical information is completely lost. In the fourth 
example, the limit point behaviour cannot be approxi-
mated using linear assumption, because the pre-critical 
part of the equilibrium curve is not linear. Eventually, 
the critical force can be reached through a series of suc-
cessive linear approximations that imitates a nonlinear 
approach (Bathe, 1996).

6. The eff ect of imperfections

In the real (not only) civil engineering world, imper-
fections always exist. We can divide them into geomet-
ric, material and numerical. The fi rst group includes 
various disturbances of structural shape, loads and 
boundary conditions. The second group consists of inho-
mogeneous material properties, effects of plasticity and 
residual stresses. The third group usually includes round-
ing off errors and controlled perturbations. The main 
problem is that imperfections are not known in advance. 
We can easily prescribe the amount of imperfection on 
the safe side, but a good imperfection shape, especially 
of complex structures, is very diffi cult to propose. In this 
paper, only geometric imperfection is treated. In the fi rst 
three examples, it is simply imposed by the initial angle 
θ0 and in the last example by vertical displacement u0, 
both measured from the undeformed position. The effect 
of imperfections is given in Figure 15.

In Figures 15.a to c, we can see that the vertical posi-
tion is not the equilibrium position anymore and that the 
bifurcation points disappear. If we examine the so-called 
imperfection sensitivity functions Pkr = f (θ0), sketched 
for all fi gures on the right), the fi rst function rises, so 
geometric imperfection does not deteriorate the Euler 
critical force. Furthermore, equilibrium functions from 
the right side have no critical point at all. Therefore, this 
is no longer a stability but a large displacement problem. 
In the remaining examples, functions have descending 
branches preceded by limit points, placed lower than the 
critical points of the perfect system. This means that the 
Euler force is reduced. As it can be seen from the formu-
las, for the second and third example reductions are gov-
erned by exponents 2/3 and 1/2, so we usually talk about 
two-third and one-half power low sensitivity functions. 
Both functions have a vertical tangent at θ0 = 0, but the 
second curve is steeper, which is associated with a high-
er imperfection sensitivity. The fourth example is of 
moderate sensitivity, because the sensitivity function is 
almost linear (see Figure 15.d). Notice, as θ0 → 0 all 
equilibrium functions get closer to that without imper-
fections. For the fi rst and third example, equilibrium 
functions from the right side and corresponding parts of 
the sensitivity curves are more realistic. Curves on the 
left can be reached, but an additional horizontal force 
(for the fi rst example) or a horizontal support (for the 
third example), should be imposed. The fourth example 
is interesting, as for some imperfections (u0<0, that 

Figure 15: Imperfections: equilibrium curves and sensitivity functions for all four models 
(Lazarević at al., 2010; URL: http://www.grad.unizg.hr/_download/repository/ts.pdf)
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makes a truss higher), the critical force rises. At the end, 
it is possible to use imperfection even in the linear theo-
ry of stability. This approximation is known as P – Δ ef-
fect and the equilibrium function for the fi rst three exam-
ples is always the same: P = Pkr(1 – θ0/θ). (We said that 
for the fourth example linearization is not well function-
ing.) As the load increases, the equilibrium function as-
ymptotically approaches the Euler critical force (see 
Figure 16.). This model is found to be very useful in 
engineering codes of practice.

7. Conclusions

We can conclude this brief overview of the basic sta-
bility phenomena with a few words on the infl uence of 
plasticity. Obviously, if a structural element (a column 
for example), is not too slender (which is not uncom-
mon), it may remain straight after a proportional (or a 
very close yield) limit is reached. Therefore, the plastic-
ity effect takes action before losing stability and the lin-
ear stiffness k is not valid any more. Here, we are talking 
about the nonlinearity of the stress-strain diagram, men-
tioned in Section 2.3. In engineering words, we must 
replace the linear (Young) modulus E = const. with the 
(usually smaller) tangent modulus Et = dσ/dε of material 
used. The tangent modulus depends on the deformation 
(stress) level and the material model adopted, which in 
the case of overall nonlinearity makes calculations (and 
computations) more complex. Generally, with the addi-
tional presence of imperfections, the bifurcation point 
turns to the limit point and post-critical behaviour usu-
ally becomes unstable. Without imperfections, stability 
loss remains in the form of bifurcation, but with the as-
cending (not horizontal) tangent on the equilibrium 
curve at the critical point. This is the celebrated conclu-
sion of Shanley (maybe the most infl uential contribution 
after Euler), given at 1947, after almost fi fty years of 
controversy in the fi eld of plastic column buckling. Dur-
ing that period, many famous researchers blundered 
(Engesser twice), while trying to explain the discrepan-
cy between the theory and carefully conducted experi-
ments on real columns. In any case, these historically 

Figure 16: Linearization and geometric imperfection

very interesting events and results, that undoubtedly 
have infl uenced the development of the modern theory 
of stability, should be the subject of a separate paper 
(Byskov, 2013).
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SAŽETAK

Osnovni modeli stabilnosti konstrukcija

U radu su opisani osnovni modeli stabilnosti konstrukcija. Nakon nekih općih komentara o stabilnosti u području gra-
đevinarstva spomenuta su četiri temeljna izvora nelinearnosti: nelinearnost jednadžbi ravnoteže, geometrijskih odnosa, 
zakona ponašanja te rubnih uvjeta po silama i pomacima. Analizirana su četiri osnovna modela stabilnosti: idealni 
 modeli i modeli s geometrijskom imperfekcijom. Osim geometrijski točne teorije dan je osvrt na početno poslijekritično 
ponašanje i linearizaciju. Rad završava komentarima o utjecaju plastičnoga popuštanja.

Ključne riječi
stabilnost konstrukcije, izbočenje, točka razgranjenja, granična točka, imperfekcija


