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Abstract
The Vijenac limestone quarry, near Tuzla in Bosnia and Herzegovina, is composed of carbonate rocks locally embedding 
tectonically disturbed siltite and sandstone with Fe-Mn concretions. The quarry itself represents a part of Dinaric over-
step sequences (the Pogari Formation) unconformably overlying ophiolite mélange and ophiolite trust-scheets. Petro-
graphic, chemical and mineralogical analyses had shown that the concretions may be divided into two types: (i) Mn-rich 
concretions with ≈ 17 wt.% of Mn and compact texture and (ii) Mn–poor with ≈ 8 wt.% of Mn and porous texture. The 
amount of Ca, Fe and Mg in both concretion types are similar. Nickel and Cr positively correlate with Fe and Mn, respec-
tively. According to petrographic and mineralogical analyses, concretions are composed of calcite, dolomite, hematite, 
todorokite and takanelite. Petrographic study confi rmed the development of concretions within three stages including 
two generations of calcite. Studied concretions are formed within consolidated sandstones inheriting their sedimentary 
textures – therefore a late diagenetic process is assumed.
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1. Introduction

A concretion is a compact mass of mineral matter, 
usually spherical or disk–shaped, embedded in a host 
rock of a different mineralogical composition. Contrary 
to nodules, concretions show distinct internal structures 
with concentric zonation (i.e. Gasparatos, 2005). Con-
cretions vary in mineralogical composition, size, shape, 
hardness, and colour. They are commonly composed of 
calcite, dolomite, siderite, pyrite, barite, ferromanganese 
oxides or gypsum. Concretions occur when a consider-
able amount of cementing material precipitates locally 
around a nucleus, which is usually some other mineral or 
fossil remains (Mozley, 2003).

The Fe-Mn concretions and nodules occur in a variety 
of geological environments like the ocean fl oor, river 
sediments, lake sediments, soils and sedimentary rocks. 
Extensive studies of the ocean fl oor Fe-Mn nodules have 
been conducted in order to determine their origin and 
potential use/exploitation (Bonatti & Nayudu, 1965; 
Bender et. al, 1966; Glasby, 1970). Within sedimentary 
rocks, one of their biggest importance is keeping records 
of diagenetic and post-depositional changes of the sedi-
mentary units, since they preserve evidence of ground-
water fl ow and the interactions on water-rock boundary 

resulting in dissolution and/or precipitation of minerals 
(Chan et. al, 2007). Concretions have been considered 
as unusual parts of sedimentary rocks, although they are 
very often found in sedimentary rocks through different 
geological periods (e.g., Seilacher, 2001; Mozley, 2003 
and references within). Fe-Mn concretions within soils 
are composed of soil minerals cemented with Fe and Mn 
oxides, oxyhydroxide and hydroxides and their origin is 
a result of seasonal changes in pH and redox potential 
(Eh). The origin of Fe-Mn in concretions is of great in-
terest in environmental geochemistry for their role in 
metal sequestration (e.g., Gasparatos, 2012; 2013 and 
references therein).

Within the Dinarides, there are only a few records on 
the concretions’/nodules’ appearances (Chiari et. al, 
2013; Lacković, 1998; Photiades, 2010; Posilović et. 
al, 2016). This study presented the fi rst evidence of the 
Fe-Mn concretions within sedimentary rocks of the Di-
naric Ophiolite Zone (abbr. DOZ), i.e. the Vijenac Quar-
ry, and a unique opportunity to study the corresponding 
diagenetic and post-depositional changes in sedimentary 
units. The Vijenac Quarry lies in the area situated be-
tween the Neogene basins of Tuzla and Banovići and 
north-westward of the Krivaja–Konjuh Ophiolite Com-
plex in NE Bosnia and Herzegovina. It is known for its 
highly pure limestone (up to 97 wt.% of calcite), with 
additions of quartz, hematite and fi ne-grained fraction 
(Knežević et al., 1986). A border–zone of the quarry is 
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composed of siltite and greywacke encompassing nu-
merous brown–black spherical/ellipsoidal concretions.

The aim of this study is to give a better insight into the 
origin of Fe-Mn concretions hosted by clastic–carbonate 
sequences of the Vijenac Quarry DOZ, Bosnia and Her-
zegovina. The presented research contributed to under-
standing the origin and the syn/post depositional pro-
cesses within the sedimentary formations associated 
with DOZ. This article brings results of micropetrogra-
phy, X–ray powder diffraction (XRD) and atomic ab-
sorption spectroscopy (AAS) analyses.

2. Geological settings

Vijenac Quarry and the surrounding area is located 
within the north-western part of the largest ophiolite 
complex named the Krivaja-Konjuh, situated in the 
DOZ. DOZ represents the internal unit of the Dinaride–
Hellenide Orogenic System, consisting of the following 
(i.e. Pamić et al., 1998):

a) Mesozoic radiolarite sequences associated with 
basalts (Pamić, 1982);

b) Ultramafi c and mafi c blocks featured by metamor-
phic sole rocks (amphibole and granulite) in their 

base (Lugović et al. 1991; Pamić, 1997; Šegvić, 
2010);

c) Ophiolite mélange composed of a shale-silty ma-
trix in which fragments of greywacke predominate 
over the ultramafi c, mafi c and metamorphic rocks, 
shale, radiolarite, tuff and limestones. In some ar-
eas, the mélange displays the distinct olistrome 
signatures (Pamić, 1982; Dimitrijević & Dimi-
trijević, 1973, 1975; Tari, 2002; Šegvić et al., 
2014).

d) Late Jurassic / Early Cretaceous overstep sequenc-
es (Pogari Formation) transgressive overlying for-
mation b) or c) (Pamić et al, 1998; Hrvatović, 
2006). Massive reed limestone of the Vijenac 
Quarry belongs to this tectonostratigraphic unit.

The geological map (see Figure 1) shows the location 
of the quarry area within the massive reef limestones, 
the youngest dated as Jurassic up to early Cretaceous 
based on fossils like Lithostrobus, Calpionella or Tintin-
opselae (Jovanović, 1957). The limestones occupy the 
central and southern parts of the map forming a large 
cone (Sunarić-Pamić et al., 1966).

Notable characteristics of limestones are karstifi ca-
tion and well-developed fracture and crack systems as a 

Figure 1: Location of the Vijenac Quarry with a geological map of the surrounding area 
(simplifi ed after Sunarić-Pamić et al., 1966)
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result of several exogenous processes and multiple tec-
tonic phases. Numerous caverns, cracks and fracture 
systems have fragmented limestones and destroyed the 
original stratifi cation. They are often fi lled with sur-
rounding materials and soil (Knežević et al., 1986; 
Miletović et al., 1978).

The northern and eastern part of the map is predomi-
nately composed of serpentinized rocks associated with 
medium-grade metamorphic rocks. Contact between the 
massive reef limestones and serpentines is tectonic and 
well differentiated, with crushed contact zones ranging 
from 1 to 3 m (Knežević, et al., 1986; Miletović et al., 
1978).

Ophiolite mélange associated with genetically related 
sedimentary sequences represents the most characteris-
tic and widespread subunit of the Internal Dinarides 
(Pamić et. al., 1998; Pamić et. al., 2002, Karamata, 
2006). This chaotic tectono–sedimentary mixture is 
made up of detached ‘pocket’ to ‘mountain’ size blocks 
and boulders of oceanic crust along with the Palaeozoic 
to Jurassic carbonates and clastic sedimentary rocks 
(Trubelja & Marchig, 1995; Tari, 2002).

A geological column (see Figure 2) of the wider 
quarry area presents general relations of the lithological 
sequences in correlation with the tectonostratigraphic 
characteristics of the DOZ. The earliest deposits belong 
to the Early-Middle Jurassic sediments (J1,2) whose com-
position includes marls, limestones and radiolarites 
(Vishnevskaya et al., 2009), overthrusted by ophiolite 
mélange (J2.3) (Šegvić et al., 2014).

Tithonian - Early Cretaceous / Late Barremian - Early 
Aptian overstep sequence of the Pogari Formation 
(Jovanović 1957, 1961; Hrvatović, 2006, respectively) 
unconformably overlie ophiolite mélange, including the 
igneous-metamorphic sequence. The Pogari Formation 
is composed mainly of unsorted marine conglomerates 
and breccias, containing fragments of re-deposited ophi-
olites and exotic reddish granites, which grade into lithic 
sandstones that laterally interfi nger with reef Tithonian 
- Berriasian massive limestones (Jovanović, 1957; 
1961; Pamić et al., 1966).

3. Materials and methods

Eight samples were chosen for macro- and micro-
petrography analyses. Based on these results, three sam-
ples were further chosen for in-depth analyses using 
X-ray diffraction (abbr. XRD) and atomic absorption 
spectroscopy (abbr. AAS; Table 1). The investigation 
was completed in the Laboratory for analysis of geolog-
ical materials (LaGEMA) at the Faculty of Mining, Ge-
ology and Petroleum Engineering, of the University of 
Zagreb.

3.1. Micropetrography

Thin sections of 8 concretion samples from the Vi-
jenac Quarry were examined microscopically using a 
Leica DM LSP stereo-microscope under magnifi cations 
of 40, 100, 400 and 600×. The microscope is equipped 
with a Leica DC 100 digital camera and Leica Qwin im-

Figure 2: A geological column showing relationships between subgroups 
of the Dinaric Ophiolite Zone, including overstep sequences 

(compiled after Hrvatović, 2006; Jovanović, 1961; Vishnevskaya et al. 2009, Šegvić et al., 2014)
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Table 1. List of samples and conducted analyses

Sample Macropetrography Micropetrography XRD AAS
VJ-1 + + + +
VJ-2 + +
VJ-3 +
VJ-4 +
VJ-5 + + + +
VJ-6 + + + +
VJ-7 + +
VJ-8 + +

Figure 3: A) Ellipsoidal concretion, with weak zonation, 7 cm in diameter, surrounded by small calcite veins that are radiating 
outward from concretion. B) Fine-grained, laminated sandstone hosting round concretion with clearly expressed zoning, 

crosscut by veinlets fi lled with calcite, 10 cm in diameter. C) The black portion of the sample is actually a part of large, 
uniform concretion hosted by coarse-grained, graded sandstone. D) Compact, ellipsoidal concretion, 4 cm in diameter.

age analysis software (IM 50 v.1.20). The grain size is 
determined using a standard calibration micrometre 
scale. Samples were subjected to staining in order to de-
termine the type of carbonates mineral present (Evamy 
and Shearman, 1962). Carbonates were immersed in a 
solution of potassium ferricyanide K3Fe(CN)6 with con-
centrated HCl and Alizarin red S C14H8O4 with a diluted 
hydrochloric acid (HCl/8) for 15 seconds and there upon 
being repeatedly immersed for 15 seconds in the solu-
tion Alzarin red S with a diluted hydrochloric acid 
(HCl/8). Finally, the samples were washed with distilled 
water.

3.2. AAS

Based on macroscopic determination, samples VJ-1, 
VJ-5 and VJ-6 were selected for the atomic absorption 
spectroscopy and prepared by means of the sequence ex-
traction analysis (abbr. SEA) and gravimetric analysis 
(see Table 1). Bulk samples of the selected concretion 
were powdered in an agate mortar.

Sequence extraction analysis according to Rauret 
(1999) consists of three steps. For our purposes the fi rst 
two steps of SEA were prepared for analyses:

i. Carbonate leaching: during the fi rst step acetic 
acid CH3COOH was used to extract the carbon-
ate–bound fraction. The extracted solution was 
used for the determination of Ca and Mg through 
the AAS method.

ii. Fe-Mn oxyhydroxide leaching: within the second 
step, Fe and Mn-oxide bound phases were extracted 
using hydroxylamine hydrochloride HONH2·HCl, 
acetate CH2COOH- and HNO3. The extracted solu-
tion was used for the determination of Cr, Fe, Mn 
and Ni through the AAS method.
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Table 2. Elements concentration in the concretions given in 
percentages. Elements are determined as follows: SEA using 

sequence extraction analysis; LOI using gravimetric analyses.

Oxides wt.% VJ-1 VJ-5 VJ-6
MnO 9.04 22.98 22.47
FeO 8.10 5.40 6.95
CaO 54.01 57.34 59.47
NiO 0.25 1.01 0.63
Cr2O3 0.01 0.01 0.01
MgO 0.17 0.17 0.17
LOI 1.30 1.50 2.30
Residue 27.12 11.59 8.0
SUM 100.00 100.00 100.00
Elements wt.% VJ-1 VJ-5 VJ-6
Mn 7.00 17.70 17.40
Fe 6.30 4.20 5.40
Ca 38.60 41.00 42.50
Ni 0.25 1.01 0.63
Cr 0.01 0.01 0.01
Mg 0.10 0.10 0.10
LOI 1.30 1.50 2.30

An Analyst 700 atomic absorption spectrometer 
equipped with an air–acetylene burner was used for the 
determination of Ca, Fe, Mg, Mn and Ni concentrations 
from the previously acquired solutions from sequence 
analyses. All chemicals were provided by the analytical–
reagent grade (Merck). Distilled–deionized water was 
used throughout. Standard solutions needed for the prep-
aration of calibration curves were made fresh-daily by 
diluting stock solutions of Ca, Cr, Fe, Mg, Mn, Ni. Loss 
of ignition (LOI) was performed at a temperature of 
430°C and recalculated using gravimetry. The results are 
shown in Table 2.

3.3. XRD

Concretion samples VJ-1, VJ-5 and VJ-6 were pow-
dered and measured using a Philips vertical X–ray goni-
ometer (type X‘Pert) equipped with a Cu tube and 
graphite crystal monochromator with the following ex-
perimental conditions: 40 kV, 40 mA, primary beam di-
vergence 1/4º, continuous scan (step 0.02º 2θ/s) three 
times (air-dried conditions):

1. Original, non-treated sample,
2. After carbonate leaching,
3. After Fe-Mn oxyhydroxide leaching.

Figure 4: A) Two generations of calcite veins large crystals are 1st generation, while small crystals are 2nd generation. 
B) Gradation of sandstones embedding concretion. Black parts are Fe-Mn minerals within cement. C) Mn-dendrites 

after partially dolomitized veins (stained sample). D) Mn–dendrites after sandstones with calcite matrix. 
(Cal – Calcite; Dol – Dolomite; Qtz – Quartz).
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Figure 5: Comparative results of XRD analysis for samples VJ-1 (fi rst), VJ-5 (second) and VJ-6 (third part). 
a) Original, non–treated sample b) Sample treated to remove carbonates c) Sample treated 

to remove Fe-Mn oxyhydroxides (procedure described under Section 3 - Materials and methods).

Table 3. Correlation of the mineral composition based on micropetrography and XRD analyses 
(Abbreviation: Alm – almandine, Brt – barite, Cal – calcite, Dol – dolomite, Gr – graphite, Gt – goethite, Hem – hematite, 
Kln – kaolinite, Mnt – montmorillonite, Ms – muscovite, Prp – pyrope, Qtz – quartz, Tkn – takanelite, Tod – todorokite). 

Mineral abbreviations after International Mineralogical Association (IMA).

Sample Micropetrography
XRD

Original sample Carbonate leaching Fe-Mn oxyhydroxide leaching
VJ-1 Cal, Dol, Qtz ± Gr, Fe–Cal Qtz, Cal, Tkn Qtz, Tkn ± Gt, Ms Qtz ± Mnt, Ms

VJ-5 Cal, Dol, Qtz ± Rt, Gr, 
Fe–Cal

Qtz, Cal, Tod, 
Tkn ± Hem, Gt

Qtz, Tkn, Tod ± Kln Hem, 
Mnt Qtz ± Kln, Hem, Alm 

VJ-6 Cal, Dol, Qtz ± Rt Qtz, Cal, Tod, Tkn ± Hem Qtz, Tkn, Tod ± Hem, Gr Qtz ± Brt, Prp, Hem
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Obtained spectres were analysed using X׳Pert High-
Score plus software. The results are presented in Table 3.

4. Results

4.1. Macropetrography

The observed concretions predominantly show spher-
ical or symmetrical shapes with diameters varying from 
2 to 20 cm. Some concretions show a non-symmetrical 
narrowing having a pear-like shape, which probably re-
fl ects space defi ciencies at the time of their formation. 
Concretion internal structure (i) shows a weak or distinct 
zonation, likely resulting from different concentration 
gradients of Fe-Mn oxyhydroxides. This zonation is vis-
ible on macroscopic samples as a variation of colour 
from lightly greyish brown (probably representing a Fe-
Mn poor zone) to almost fully black zone (probably rep-
resenting a Fe-Mn rich zone) (see Figures 3A; B) or (ii) 
appears as compact and uniform (see Figures 3C; D). 
Most concretions are surrounded or crosscut by calcite 
veins (see Figures 3A; B) formed by later tectonic pro-
cesses. The host rock was classifi ed as greywacke sand-
stone (classifi cation after Pettijohn et. al, 1972) (see 
Figures 3C; D) showing internal folding and distinct 
grain–size grading.

4.2. Micropetrography

The host rocks of the Fe-Mn concretions are classifi ed 
as lithic greywacke that has a clastic texture with a clear-
ly recognizable lamination. Layering and graded bed-
ding is present in some of the samples (see Figure 4). 
Concretions contain the following mineral assemblages: 
(1) siliciclastic host rock assemblage (primary minerals) 
and (2) cement composed of Fe-Mn oxyhydroxides and 
carbonate (secondary minerals). The primary assem-
blage is composed of quartz (≈ 60 vol%), opaque miner-
als, subordinate rutile (≈ 30 vol%), lithic fragment (≈ 10 
vol%), and some chlorite and Fe-carbonate. The cement 
is composed of the Fe-Mn oxyhydroxides and calcite 
(see Figures 4A - D). Calcite also occurs within veins 
surrounding the Fe-Mn concretions, in two generations: 
a cm-thick calcite veins occur crosscut by the next gen-
eration of tiny calcite veinlets (see Figure 4C). Calcite 
in the vein and cement is subjected to partial dolomitiza-
tion, as suggested by carbonate staining (see Figure 
4D). This fi gure also shows the development of second-
ary Mn-dendrites within carbonate veinlets. Fe-Mn oxy-
hydroxides are further confi rmed by XRD as hematite, 
takanelite ((Mn,Ca)Mn4O9 · H2O) and todorokite ((Na,
Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 ·3-4H2O) (detailed de-
scription within section 4.4.).

4.3. AAS

Results of the AAS analyses show that the bulk com-
position of the concretions consists of Mn (7–17 wt.%), 

Ca (39-42 wt.%) and Fe (4–6 wt.%) while the rest cor-
responds to silica residue. The concentration of Mn is 
considerably lower in the sample VJ-1 in contrast to 
samples VJ-5 and VJ-6. The abundance of Ca and Fe in 
all three samples did not signifi cantly vary. To assess the 
infl uence of the surrounding ophiolite rocks, the concen-
trations of Ni, Cr, Mg were measured (see Figures 1 and 
2). Their percentage was found to be below 1 wt.% (see 
Table 2).

4.4. XRD

According to X-ray diffraction analysis, manganese 
minerals and quartz are the dominant phases in the con-
cretions (see Figure 5). Results of micropetrography for 
samples VJ-1, VJ-5 and VJ-6 are presented along the re-
sults of XRD analysis in Table 3.

All three original samples show similar mineral par-
agenesis, consisting of quartz, calcite and Mn oxyhy-
droxide phases (todorokite, takanelite). Samples de-
prived of carbonates show analogue assemblages (with-
out calcite), while the intensities of the peaks of Mn 
minerals are somewhat accentuated. Following the re-
moval of Fe-Mn oxyhydroxides the weak refl exes of dif-
ferent types of clay minerals (most likely kaolinite or 
montmorillonite), and in some cases minerals from gar-
net group or barite may be identifi ed.

5. Discussion

5.1.  Mineralogical and chemical composition 
of concretions

Petrographic, chemical and XRD analyses of Fe-Mn 
concretions had pointed to their twofold composition. 
The fi rst type is consisted of Mn-rich concretions with 
≈17 wt.% of Mn and compact texture (VJ-5 and VJ-6), 
whereas the second type is made of Mn-poor (≈8 wt.% 
of Mn) concretions with a porous texture (VJ-1). The 
amounts of Cr and Fe in both concretions are similar.

The described types of concretions, alongside with 
their mineralogical and chemical properties are given in 
Figure 6. Both concretion types are embedded within 
lithic greywacke inheriting previous sedimentary struc-
tures (see Figure 3B; C). The Vijenac Quarry concre-
tions appear to be much larger in size (up to 20 cm in 
diameter) comparing to the available literature data for 
soils and sediments hosted concretions (Gasparatos 
2005; 2012; 2013; Chan et al., 2007 and references 
therein).

The Mn-rich concretions occur in compact and ellip-
soidal forms. Macroscopically one can identify quartz 
grains and lithic fragments up to 0.5 cm in size and 
cross-cutting calcite veins (see Figure 3). Micropetrog-
raphy and XRD confi rm the presence of quartz, calcite, 
dolomite, takanelite, todorokite and a minor amount of 
rutile, hematite and some other accessory minerals (see 



Bevandić, S., Brenko, T., Babajić, E., Borojević Šoštarić, S. 70

The Mining-Geology-Petroleum Engineering Bulletin and the authors ©, 2018, pp. 63-74, DOI: 10.17794/rgn.2018.3.7

Figure 6A). Concretions are enriched in Mn (≈ 17 
wt.%), Ni (up to 0.8 wt.%) and additionally containing ≈ 
5 wt.% of Fe.

Mn-poor concretions have a mineralogical composi-
tion equal to Mn-rich concretions (see Figure 6B). They 
are low in the Mn (≈ 8 wt.% of Mn), Ni (0.2 wt.%) and 
containing ≈ 6 wt.% of Fe.

Ni increase from 0.2 wt.% within the Mn-poor con-
cretions until 0.8 wt.% within the Mn rich concretions. 
Similar trends had been observed by Gasparatos (2013 
and references therein) where Ni content in Fe-Mn con-
cretions positively correlates with a Mn-rich phase. The 
amounts of Cr (0.01 wt.%) and Fe (5-6 wt.%) within 
both Vijenac Quarry concretion types are uniform. Ac-
cording to the literature (Gasparatos, 2013 and refer-
ences therein) an increased Cr value likely involves iso-
morphic substitution of Cr3+ with Fe3+, and therefore 
positively correlates with the amount of the Fe.

5.2.  Formation mechanisms of the Fe-Mn 
concretions

Several general types of the Fe-Mn concretion form-
ing mechanisms are plausibly related to different sce-
narios for the Vijenac Quarry concretion formation.

1. Freshwater and lacustrine Fe-Mn concretions 
can be developed as autochthonous phases during the 
freshwater and lacustrine sediments diagenesis, con-
trolled by the upward migration of the pore water (Davi-
son, 1982 and references therein). A selective solution of 
the Fe and Mn, caused by changes in redox conditions, 
later facilitated mixing and enrichment of pore water 

where concretions were developing. The presence of an 
increased amount of organic matter, characteristic for 
this type of environment, affects the enrichment of the 
pore water as well. The main mineral of the freshwater 
Fe-Mn concretion is goethite, while Mn phases are rep-
resented by todorokite, psilomelane and birnessite. 
These concretions are characterised by variations in 
their Fe/Mn ratios, concentric bands of alternating Fe-
rich (lighter) and Mn-rich (darker) laminations, in-
creased content of organic matter and low content of 
microelements such as Co, Mn, Mo, Ni, Ti (Davison, 
1982 and references therein). Additionally, Fe-rich lami-
nas are associated with silica, phosphate and arsenic, 
whereas Mn-rich laminas associated with Cu, Co, Ni 
and Zn. This type of formation mechanisms was consid-
ered for the Vijenac Quarry concretions, due to the pres-
ence of goethite and todorokite and subordinate amounts 
of analysed microelements (Cr, Ni).

2. The Fe-Mn concretions found in soil are formed 
in the exchanging oxidation and reduction conditions 
within the soil sequence. Concretions in soil are ex-
tremely fi rm, rounded morphologic bodies, formed 
through the process of reduction, relocation and oxida-
tion of the Fe and Mn. There are two periods of forma-
tion. During the moist period, the percentage of Fe3+ and 
Mn3+/4+ is lowered and growth of concretion is ceased. 
During the dry period, the percentage of oxygen is in-
creasing, subsequently triggering the onset of Fe and Mn 
precipitation within the matrix. This type of concretion 
has an infi ll of Fe and Mn oxides located between frag-
ments of matrix, skeletons of grain, fossils, clay miner-
als and pores. Formation is a long-term process, specifi c 

Figure 6: Schematic sketch of concretion types together with their mineralogical and chemical 
properties within the Vijenac Quarry: A) Mn–rich concretions and B) Mn–poor concretions. 

The orange parts show siliciclastic host rock assemblage (primary minerals) and the black part 
is cement composed of Fe–Mn oxyhydroxides (secondary minerals) (Abbreviation: Brt – barite, 
Cal – calcite, Dol – dolomite, Fe-cal – iron calcite, Gr – graphite, Gt – goethite, Hem – hematite, 

Mnt – montmorillonite, Ms – muscovite, Prp – pyrope, Qtz – quartz, Tkn – takanelite, Tod 
– todorokite). Mineral abbreviations after International Mineralogical Association (IMA).
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for some types of soil. Other minerals that can be found 
in concretions except Fe-Mn oxyhydroxides, quartz and 
clay minerals (Gasparatos, 2012). This type of forma-
tion mechanisms was considered for the Vijenac Quarry 
due to the presence of secondary Fe and Mn minerals 
and clay in the matrix and primary quartz within clastic 
assemblage. However, these types of concretions usual-
ly have a seed nucleus around which the mineralization 
started and are up to 4 cm in size. Concretions from the 
Vijenac Quarry are larger and our investigation did not 
fi nd traces of initial fragment.

3. The Fe-Mn concretions in sandstones occur as 
the result of precipitations of the Fe-Mn oxyhydroxides 
from groundwater. Due to circulation, the exchange of 
oxidation-reduction phases take place. Concretion is 
usually found within predominantly clastic sandstones 
with good circulation of groundwater or fl uid. These 
types of concretions usually lack a nucleus. A concentric 
structure can be observed within larger samples, where-
as small concretions sometimes show massive structure 
(Chan et al., 2007). This formation mechanism was 
considered for the Vijenac Quarry concretions for the 
several reasons: (i) host rock lithology (sandstones); (ii) 
missing nucleus of the studied concretions; (iii) massive 
structure of the small concretions and complex structure 
including rinds and multiple layers of the large concre-
tions (see Figure 3).

5.3.  Origin of concretions within the Vijenac 
Quarry

Based on a detailed petrographic, mineralogical and 
chemical study, the formation of the Vijenac Quarry con-
cretions is hypothesised to have proceeded in three sepa-
rate stages. Here we briefl y summarize the evidence sup-
porting this assumption. According to the literature, con-
cretions from the Vijenac Quarry show similarities to the 
concretions formed in soils and sandstones. Similar min-
eralogy (the Fe-Mn oxyhydroxides and indicated clay 
minerals) can be precipitated during the exchange of re-
dox potential in soil moist vs dry periods), whereas their 
sedimentary host, structure and missing nucleus show 
similarities to the concretions formed in sandstones. 
Chemical analysis performed on concretions VJ-1, VJ-5 
and VJ-6, enabled classifi cation into two types: 1) Mn-
rich concretions (VJ-5 and VJ-6) having Mn ≈ 17.5 wt.%, 
Fe ≈ 5 wt.% and 2) Mn-poor concretion (VJ-1) having 
Mn ≈ 7.5 wt.%, Fe ≈ 6.3 wt.%. Both types share similar 
proportions of other analysed microelements as well as 
similar mineralogical composition. According to the pH/
Eh diagrams for the recognised Fe and Mn species, coex-
isting Fe and Mn minerals would precipitate under the 
conditions of pH= 4–6 and Eh = 0.3–1 V (Takeno, 2005). 
Takeno (2005) diagram is used under the assumption of 
saturated conditions for Fe and Mn (i.e. the total concen-
tration of Mn of 10 at −10 mol/L and the total Fe concen-
tration of 10 at −10 mol/L). Concretions generally show 
the following stages of development:

5.3.1. Stage 1 - Fe-Mn concretion growth

According to literature observations summarised in 
Section 5.2., concretion development begins with the 
circulation of groundwater enriched with the Fe and Mn 
through the porous rocks, followed by periodic precipi-
tation of the Fe-Mn oxyhydroxides, related to the oscil-
lation of redox potential. Periodical precipitation and 
variations of the Fe and Mn within groundwater led to 
the development of concentric structures (zones), recog-
nisable in most of the Vijenac Quarry concretions (see 
Figure 3). Zones have different proportion of the Fe/Mn 
oxyhydroxides, generally increasing with macroscopi-
cally and microscopically visible darkening (see Fig-
ures 3; 4). According to Gasparatos (2012 and refer-
ences therein) Mn precipitated at lower pH and under a 
more oxidised environment comparing to Fe and thus 
small variations of pH and Eh conditions during periodi-
cal oscillation of groundwater would largely infl uence 
the dynamics of precipitation.

5.3.2. Stage 2 - Carbonatization

The second phase is characterised by the develop-
ment of microtectonic-related veins and veinlets fi lled 
with secondary carbonates (mainly calcite), usually 
cross-cutting the concretion zonation. In some cases, 
secondary carbonate fractures and veinlets follow the 
concentric structure of concretion (see Figure 3A). 
Here, we had recognised two stages of veinlet develop-
ment; fi rst generation calcite within >1 cm thick veins 
containing up to 1.5 mm in size is crosscut by the second 
generation of tiny carbonate veinlets containing crystals 
about 0.1 mm in size. The appearance of the secondary 
Mn-dendritic structures is related to the fi rst generation 
of carbonates (see Figure 4D). Carbonatization is also 
recognisable within the matrix of the concretions. Some 
manganese carbonates occur as well, as evidenced by 
XRD (see Table 3).

5.3.3. Stage 3 - Dolomitization

Finally, large calcite grains within fi rst generation 
veins are subjected to partial dolomitization, as proven 
by the method of carbonate staining (see Figure 4D). 
Dolomitization is also recognized within the matrix.

5.4.  Concretions age and spatial correlation 
within the Dinarides

The studied concretions are formed within consoli-
dated sandstones inheriting their sedimentary textures. 
Macro and micropetrography of the concretions shows 
bedding, internal folding and micro-faulting infi lled 
with carbonates. Observed structural features continue 
without a break to the host greywacke sandstone point-
ing to a late origin of concretions, most likely related to 
the uplift of the Pogari Formation toward a level of me-
teoric water system. According to Pamić et al. (1998) 
compressional events throughout Eocene and Oligocene 
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were accompanied by the several uplift episodes of the 
Dinarides. So far, Vijenac Quarry concretions are a sin-
gle report of the Fe-Mn concretions within the Internal 
Dinaride units.

The Upper Cretaceous limestones within the External 
Dinaride formations have reported records of the Mn. It 
appears that Late Cretaceous backshore limestones from 
the island of Dugi Otok, Croatia, host an unusual occur-
rence of Mn-hydrated oxide mineralization in the form 
of botryoidally and globular, fi ne-laminated concentric 
aggregates consisting of todorokite and accessory 
MnO·OH (Lugović et al., 2008). The authors suggested 
that Mn has been leached and mobilized from the Late 
Pleistocene sea fl oor sediments located around 50 nauti-
cal miles south of Dugi Otok, therefore the Mn occur-
rence is related to the uplift of buried sediments into a 
meteoric water system. Furthermore, (Posilović et al. 
2016) discovered the variously shaped and internally 
zoned siliceous-carbonate concretions in Southern Croa-
tia (Šubir hill tunnel; Pojezerje municipality area) within 
the Upper Cretaceous carbonate deposits (latest Cenom-
anian / Early Turonian). Their carbon isotope composi-
tion corresponds to the globally known Cenomanian–
Turonian ‘Oceanic Anoxic Event’, therefore correspond-
ing to early (syn) diagenetic origin. Concretions are of 
different size, from less than 1cm to more than 20 cm in 
diameter. Another late diagenetic appearance of carbon-
ate concretions is recorded within the Early Cretaceous 
limestones and dolostones of the Tounj Cave, near Ogu-
lin, in Central Croatia (Lacković, 1998).

6. Conclusion

In this study, we had investigated the Fe-Mn concre-
tions embedded within the border zone of the Vijenac 
Quarry, composed of tectonically disturbed siltite and 
sandstone. The quarry is a part of Dinaric overstep se-
quences (the Pogari Formation) of Late Jurassic / Early 
Cretaceous to Late Cretaceous age.

According to petrographic, chemical and mineralogi-
cal analyses, concretions may be grouped into Mn-rich 
and Mn-poor concretions having 17 wt.% and 8 wt.% of 
Mn respectively, 5−6 wt.% of Fe and consisting of 
quartz, calcite, dolomite, takanelite and todorkite. The 
content of Ni in concretions positively correlates with 
Mn abundances whereas Cr correlates with Fe.

According to the pH/Eh diagrams, coexistence of the 
Fe-Mn oxyhydroxides would precipitate under the con-
ditions of pH= 4–6 and Eh = 0.3–1 V (Takeno, 2005). 
Petrographic and mineralogical study points to the de-
velopment of Fe-Mn concretions in three stages:

1)  The Fe-Mn concretion growth and development of 
zonal structures related to the oscillation of redox 
potential and variation of Fe and Mn within circu-
lating groundwater through the porous Vijenac 
Quarry grey wackes.

2)  Two generations of carbonates developed within 
microtectonically-related veins and veinlets cross-
cutting surrounding the concretions or within the 
concretion matrix. First generation veins contain 
secondary Mn-dendritic structures.

3)  Large calcite grains within fi rst generation veins 
are subjected to partial dolomitization, also recog-
nized within the concretion matrix.

The Vijenac Quarry concretions are similar to the Fe-
Mn concretions within sandstones occurring as a result 
of precipitations of Fe-Mn oxyhydroxides from oscillat-
ing groundwater. This formation mechanism was con-
sidered for the Vijenac Quarry concretions for several 
reasons: (i) host rock lithology (sandstones); (ii) missing 
nucleus of the studied concretions; (iii) the massive 
structure of the small concretions and complex structure 
including rinds and multiple layers of the large concre-
tions. The studied concretions are formed within con-
solidated sandstones inheriting their sedimentary tex-
tures most likely related to the uplift of the Pogari For-
mation toward a level of the meteoric water system. 
Formation of the concretions might have occurred dur-
ing the Eocene to Oligocene uplift of the Dinarides.
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SAŽETAK

Mehanizmi za formiranje Fe-Mn konkrecija unutar kamenoloma Vijenac 
smještenoga u pojasu dinaridskoga ofi olitnog melanža

Rudnik Vijenac, smješten u blizini Tuzle, Federacija Bosne i Hercegovine, sastoji se od karbonatnih stijena, koje su lokal-
no proslojene tektonski poremećenim naslagama siltita i pješčenjaka s Fe-Mn konkrecijama. Sam kamenolom nalazi se 
u zoni dinaridskoga navlačnog pojasa (Pogari serija naslaga) koje diskontinuirano leže na ofi olitnome melanžu i ofi olit-
nim navlačnim naslagama. Petrografske, kemijske i XRD analize pokazale su da se konkrecije mogu podijeliti u dva tipa: 
(i) Mn-obogaćene konkrecije s ≈ 17 wt.% udjela Mn s kompaktnom strukturom te (ii) Mn-osiromašene s ≈ 8 wt.% udjela 
Mn te poroznijom strukturom. Udjeli Ca, Mg, Fe i organske tvari obaju tipova konkrecija podjednaki su. Udio Ni pozi-
tivno korelira s Mn, udio Cr pozitivno korelira s Fe. Prema petrografskim i XRD analizama konkrecije se sastoje od kalci-
ta, dolomita, hematita, todorokita i takanelita. Todorokit je karakterističan mineral za konkrecije formirane dijagenet-
skim rastom. Petrografska istraživanja potvrdila su rast konkrecija u trima fazama s ukupno dvjema generacijama kalcita. 
Promatrane konkrecije nalaze se unutar konsolidiranih pješčenjaka te nasljeđuju njihove sedimentne strukture – stoga 
se pretpostavlja kasnodijagenetski proces rasta.

Ključne riječi: 
Fe-Mn konkrecije, dijagenetski rast, Mn-minerali, kemijske analize, dinaridski ofi olitski pojas
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