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Abstract:  
 
One of the challenging aspects of conditional 
heteroskedasticity series is that if we were to plot 
the correlogram of a series with volatility we might 
still see what appears to be a realisation of 
stationary discrete white noise. That is, the 
volatility itself is hard to detect purely from the 
correlogram. This is despite the fact that the series 
is most definitely non-stationary as its variance is 
not constant in time. So ARCH and GARCH models 
have become important tools in the analysis of 
time series data, particularly in financial 
applications. These models are especially useful 
when the goal of the study is to analyze and 
forecast volatility. This paper gives the motivation 
behind the simplest GARCH model and illustrates 
its usefulness in examining portfolio risk. So an 
ARCH (autoregressive conditionally 
heteroskedasticity) model is a model for the 
variance of a time series. 
 
 
 
 
 
 
 
 

 

 
ARCH models are used to describe a changing, 
possibly volatile variance.  Although an ARCH 
model could possibly be used to describe a 
gradually increasing variance over time, most 
often it is used in situations in which there may be 
short periods of increased variation.  (Gradually 
increasing variance connected to a gradually 
increasing mean level might be better handled by 
transforming the variable). In this article we will 
see what is ARCH and GARCH, how it’s helpful for 
analyzing economic and financial data and how to 
use it in R-Studio. 
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Introduction 
The great workhorse of applied econometrics is the 
least squares model. This is natural because 
applied econometricians are typically called upon 
to determine how much one variable will change in 
response to a change in some other variable. 
Increasingly however, econometricians are being 
asked to forecast and analyze the size of the errors 
of the model. In this case the questions are about 
volatility and the standard tools have become the 
ARCH/GARCH models. The basic version of the least 
squares model assumes that, the expected value of 
all error terms when squared is the same at any 
given point. This assumption is called 
homoscedasticity and it is this assumption that is 
the focus of ARCH/GARCH models. Data in which the 
variances of the error terms are not equal, in which 
the error terms may reasonably be expected to be 
larger for some points or ranges of the data than 
for others, are said to suffer from 
heteroskedasticity. The standard warning is that in 
the presence of heteroskedasticity, the regression 
coefficients for an ordinary least squares 
regression are still unbiased, but the standard 
errors and confidence intervals estimated by 
conventional procedures will be too narrow, giving 
a false sense of precision. Instead of considering 
this as a problem to be corrected, ARCH and GARCH 
models treat heteroskedasticity as a variance to be 
modeled. As a result, not only are the deficiencies 
of least 3 squares corrected, but a prediction is 
computed for the variance of each error term. This 
turns out often to be of interest particularly in 
finance [1]. 
Autoregressive conditional heteroskedasticity 
(ARCH). In econometrics, the autoregressive 
conditional heteroskedasticity (ARCH) model is a 

statistical model for time series data that 
describes the variance of the current error term or 
innovation as a function of the actual sizes of the 
previous time periods' error terms, often the 
variance is related to the squares of the previous 
innovations. The ARCH model is appropriate when 
the error variance in a time series follows an 
autoregressive (AR) model; if an autoregressive 
moving average (ARMA) model is assumed for the 
error variance, the model is a generalized 
autoregressive conditional heteroskedasticity 
(GARCH) model for forecasting, combining ARIMA 
and ARCH models could be considered. For 
instance, a hybrid ARIMA-ARCH model was 
examined for shipping freight rate forecast [2]. 
ARCH models are commonly employed in modeling 
financial time series that exhibit time-varying 
volatility and volatility clustering, i.e. periods of 
swings interspersed with periods of relative calm. 
ARCH-type models are sometimes considered to be 
in the family of stochastic volatility models, 
although this is strictly incorrect since at time t 
the volatility is completely pre-determined 
(deterministic) given previous values [1]. 
Volatility clustering. Volatility clustering is the 
tendency of large changes in prices of financial 
assets to cluster together, which results in the 
persistence of these magnitudes of price changes. 
Another way to describe the phenomenon of 
volatility clustering is to quote famous scientist-
mathematician Benoit Mandelbrot, and define it as 
the observation that "large changes tend to be 
followed by large changes and small changes tend 
to be followed by small changes" when it comes to 
markets. This phenomenon is observed when there 
are extended periods of high market volatility or the 
relative rate at which the price of a financial asset 
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change, followed by a period of "calm" or low 
volatility [3]. 
Volatility clusters the phenomenon of there being 
periods of relative calm and periods of high 
volatility is a seemingly universal attribute of 
market data.  There is no universally accepted 
explanation of it. GARCH (Generalized 
Autoregressive Conditional Heteroskedasticity) 
models volatility clustering.  It does not explain it. 
Figure 1 is an example of a Garch model of volatility 
[4]. 
 

 
Figure 1- S&P 500 volatility until late 2011 as estimated by 
a Garch (1, 1) model [4] 
 
The definition of GARCH process. The generalized 
autoregressive conditional heteroskedasticity 
(GARCH) process is an econometric term developed 
in 1982 by Robert F. Engle, an economist and 2003 
winner of the Nobel Memorial Prize for Economics, 
to describe an approach to estimate volatility in 
financial markets. There are several forms of 
GARCH modeling. The GARCH process is often 
preferred by financial modeling professionals 
because it provides a more real-world context than 
other forms when trying to predict the prices and 
rates of financial instruments [5]. 
 
Breaking down GARCH Process. Heteroskedasticity 
describes the irregular pattern of variation of an 

error term, or variable, in a statistical model. 
Essentially, where there is heteroskedasticity, 
observations do not conform to a linear pattern. 
Instead, they tend to cluster. The result is that the 
conclusions and predictive value one can draw 
from the model will not be reliable. GARCH is a 
statistical model that can be used to analyze a 
number of different types of financial data, for 
instance, macroeconomic data. Financial 
institutions typically use this model to estimate 
the volatility of returns for stocks, bonds and 
market indices. They use the resulting information 
to help determine pricing and judge which assets 
will potentially provide higher returns, as well as to 
forecast the returns of current investments to help 
in their asset allocation, hedging, risk 
management and portfolio optimization decisions 
[5]. 
The general process for a GARCH model involves 
three steps. The first is to estimate a best-fitting 
autoregressive model. The second is to compute 
autocorrelations of the error term. The third step is 
to test for significance. Two other widely used 
approaches to estimating and predicting financial 
volatility are the classic historical volatility (VolSD) 
method and the exponentially weighted moving 
average volatility (VolEWMA) method [5]. 
Example of GARCH Process. GARCH models help to 
describe financial markets in which volatility can 
change, becoming more volatile during periods of 
financial crises or world events and less volatile 
during periods of relative calm and steady 
economic growth. On a plot of returns, for example, 
stock returns may look relatively uniform for the 
years leading up to a financial crisis such as the 
one in 2007. In the time period following the onset 
of a crisis, however, returns may swing wildly from 
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negative to positive territory. Moreover, the 
increased volatility may be predictive of volatility 
going forward. Volatility may then return to levels 
resembling that of pre-crisis levels or be more 
uniform going forward. A simple regression model 
does not account for this variation in volatility 
exhibited in financial markets and is not 
representative of the "black swan" events that 
occur more than one would predict [5]. 
 
GARCH Models Best for Asset Returns. GARCH 
processes differ from homoscedastic models, 
which assume constant volatility and are used in 
basic ordinary least squares (OLS) analysis. OLS 
aims to minimize the deviations between data 
points and a regression line to fit those points. 
With asset returns, volatility seems to vary during 
certain periods of time and depend on past 
variance, making a homoscedastic model not 
optimal [5]. 
 
GARCH processes, being autoregressive, depend on 
past squared observations and past variances to 
model for current variance. GARCH processes are 
widely used in finance due to their effectiveness in 
modeling asset returns and inflation. GARCH aims 
to minimize errors in forecasting by accounting for 
errors in prior forecasting and, thereby, enhancing 
the accuracy of ongoing predictions [5]. 
Estimation of Garch. We are staying with a GARCH 
(1, 1) model; not because it is the best it certainly is 
not. We are staying with it because it is the most 
commonly available, the most commonly used, and 
sometimes good enough [4]. GARCH models are 
almost always estimated via maximum likelihood.  
That turns out to be a very difficult optimization 
problem.  That nastiness is just another aspect of 

us trying to ask a lot of the data.  Assuming that you 
have enough data that it matters, even the best 
implementations of GARCH bear watching in terms 
of the optimization of the likelihood [4]. 
We know that returns do not have a normal 
distribution, that they have long tails.  It is 
perfectly reasonable to hypothesize that the long 
tails are due entirely to GARCH effects, in which 
case using a normal distribution in the GARCH 
model would be the right thing to do.  However, 
using the likelihood of a longer tailed distribution 
turns out to give a better fit (almost always).  The t 
distribution seems to do quite well [4]. 
 
The Usefulness of Garch model. GARCH or 
generalized autoregressive conditional 
heteroskedasticity models are used to model the 
conditional volatility of a time series.  
Financial markets data often exhibit volatility 
clustering, where time series show periods of high 
volatility and periods of low volatility. In fact, with 
economic and financial data, time-varying 
volatility is more common than constant volatility, 
and for accurate modeling of time-varying 
volatility we use GARCH models. A GARCH (1, 1) is in 
fact equivalent to an ARCH (infinity) model [6]. 
Using GARCH model in R-Language. The first step to 
build our GARCH model is we need to install the 
“quantmod” package by using the command → 
install.packages ("quantmod") after pressing 
enter the package will be installed. 
This command is so important to build the model to 
check how it work we use the command  → library 
("quantmod") and we press enter we get the 
result: 
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Loading required package: xts 

Loading required package: zoo 
Attaching package: ‘zoo’ 
The following objects are masked from 
‘package:base’: 
 
    as.Date, as.Date.numeric 
 
Loading required package: TTR 
Version 0.4-0 included new data 
defaults. See ?getSymbols. 
Learn from a quantmod author: 
https://www.datacamp.com/courses/impor
ting-and-managing-financial-data-in-r 
Warning messages: 
1: package ‘quantmod’ was built under R 
version 3.5.2  
2: package ‘xts’ was built under R 
version 3.5.2  
3: package ‘TTR’ was built under R 
version 3.5.2  

 
Now we need to use the getSymbols command to 
bring the data that we will use in GARCH model and 
it will be Facebook stock data and we will store it 
(Fb) by using this command → Fb<-
getSymbols("FB",auto.assign =F) and press enter 
and the result will be the stock data of Facebook of 
the year 2012 and it will be stored in the (Fb): 
 
‘getSymbols’ currently uses 
auto.assign=TRUE by default, but will 
use auto.assign=FALSE in 0.5-0. You 
will still be able to use 
‘loadSymbols’ to automatically load 
data. getOption("getSymbols.env") 
and 
getOption("getSymbols.auto.assign") 
will still be checked for 
alternate defaults. 
 
This message is shown once per session 
and may be disabled by setting  
options("getSymbols.warning4.0"=FALSE)
. See ?getSymbols for details. 
WARNING: There have been significant 
changes to Yahoo Finance data. 
Please see the Warning section of 
‘?getSymbols.yahoo’ for details. 
 
This message is shown once per session 
and may be disabled by setting 
options("getSymbols.yahoo.warning"=FAL
SE). 
 
If we want to see what is this data we use the 
command → head (Fb) the result will be: 
 
 
 

           FB.Open FB.High FB.Low 
FB.Close FB.Volume FB.Adjusted 
2012-05-18   42.05   45.00  38.00    
38.23 573576400       38.23 
2012-05-21   36.53   36.66  33.00    
34.03 168192700       34.03 
2012-05-22   32.61   33.59  30.94    
31.00 101786600       31.00 
2012-05-23   31.37   32.50  31.36    
32.00  73600000       32.00 
2012-05-24   32.95   33.21  31.77    
33.03  50237200       33.03 
2012-05-25   32.90   32.95  31.11    
31.91  37149800       31.91 

 
Now we have the stock data of Facebook if we want to 
see the chart of this data we can do it by using the 
command  chart_Series(Fb) it will open the chart for 
this data and it will be from 2012 until 2019 in the chart 
we see the stock market for Facebook is growing 
since 2012 until 2018 it stat going done and we can see 
it clearly in the Figure 2 that shows the Facebook 
stocks price: 
 

 
Figure 2 - Facebook stocks price 
 
Now we take the FB.Close to do the GARCH model on it 
the way to do it by using the command → FbClose<-
Fb$FB.Close  the $ means that we need to take the 
FB.Close data and by the way we store it in FbClose  to 
see the data we use the command → head(FbClose) 
and we will receive the result: 
 

               FB.Close 
2012-05-18    38.23 
2012-05-21    34.03 
2012-05-22    31.00 
2012-05-23    32.00 
2012-05-24    33.03 
2012-05-25    31.91 
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Now we need to install the GARCH package and the 
name of this package in R-language is “rugarch” 
and we can install it by using the command → 
install.packages("rugarch") and it will be installed 
in R-Studio package system. 
 
And if we want to check the package we use the 
command → library("rugarch").  
Now it’s the time to build the GARCH model and we 
need to build it by using several commands: 
 
The first command will be → Fb0<-
ugarchspec(variance.model = 
list(model="sGARCH",garchOrder=c(1,1)),mean.mod
el = list(armaOrder=c(0,0)),distribution.model = 
"std"). 
 
What we did we put the variance , mean and the 
distribution in the model and we use (0,0) as the 
mean because if we used larger number there will be 
no result at all because the model use the minimum 
value and we store it in (Fb0). 
 
And the second command will be → FbGarch0<-
ugarchfit(spec = Fb0,data = FbClose). 
 
This command will activate the model and give use 
some results by the way we store it in  FbGarch0 after  
that we see the results by using the command → 
FbGarch0 and we see what we got : 
 
*---------------------------------* 
*          GARCH Model Fit        * 
*---------------------------------* 
 
Conditional Variance Dynamics 
----------------------------------- 
GARCH Model : sGARCH(1,1) 
Mean Model : ARFIMA(0,0,0) 
Distribution : std 
Optimal Parameters 
------------------------------------ 
Estimate  Std. Error    t value Pr(>|t|) 

mu     117.848477     0.25169 468.230899 
0.000000 
omega    1.483258     0.33576   4.417569 
0.000010 
alpha1   0.998993     0.11957   8.354842 
0.000000 
beta1    0.000007     0.12780   0.000052 
0.999958 
shape   99.999936    24.40302   4.097851 
0.000042 
 
Robust Standard Errors: 
Estimate  Std. Error    t value Pr(>|t|) 
mu     117.848477     0.62511 188.525699 
0.000000 
omega    1.483258     1.28268   1.156378 
0.247526 
alpha1   0.998993     0.23992   4.163916 
0.000031 
beta1    0.000007     0.24791   0.000027 
0.999978 
shape   99.999936     1.22662  81.524543 
0.000000 
 
LogLikelihood : -8471.395 
 
Information Criteria 
------------------------------------ 
Akaike       9.9430 
Bayes        9.9589 
Shibata      9.9430 
Hannan-Quinn 9.9489 
 
Weighted Ljung-Box Test on Standardized 
Residuals 
------------------------------------ 
statistic p-value 
Lag[1]                       1591       0 
Lag[2*(p+q)+(p+q)-1][2]      2375       0 
Lag[4*(p+q)+(p+q)-1][5]      4660       0 
d.o.f=0 
H0 : No serial correlation 
 
Weighted Ljung-Box Test on Standardized 
Squared Residuals 
------------------------------------ 
statistic p-value 
Lag[1]                     0.0857 0.76971 
Lag[2*(p+q)+(p+q)-1][5]    2.8916 
0.42720 
Lag[4*(p+q)+(p+q)-1][9]    9.0539 
0.07924 
d.o.f=2 
Weighted ARCH LM Tests 
------------------------------------ 
Statistic Shape Scale P-Value 
ARCH Lag[3] 0.0006206 0.500 2.000 
0.98013 
ARCH Lag[5] 2.2798322 1.440 1.667 
0.41264 
ARCH Lag[7] 8.3779082 2.315 1.543 
0.04321 
 
Nyblom stability test 
------------------------------------ 
Joint Statistic:  469.6939 
Individual Statistics: 
mu       2.52781 
omega    0.04648 
alpha1   4.54412 
beta1    0.28380 
shape  442.01008 
 
Asymptotic Critical Values (10% 5% 1%) 
Joint Statistic:       1.28 1.47 
1.88 
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Individual Statistic:  0.35 0.47 
0.75 
Sign Bias Test 
------------------------------------ 
t-value   prob sig 
Sign Bias           0.4474 0.6546 
Negative Sign Bias  1.0337 0.3014 
Positive Sign Bias  1.0822 0.2793 
Joint Effect        2.6456 0.4496 
 
Adjusted Pearson Goodness-of-Fit Test: 
------------------------------------ 
group statistic p-value(g-1) 
1    20      9703            0 
2    30     14521            0 
3    40     17731            0 
4    50     16631            0 
 
Elapsed time : 0.4993329 

 
The most important information is the Akaike = 9.9430 
the less it is the batter the model will be and that’s 
how to build Garch model and how it works. 
Akaike information criterion. The Akaike information 
criterion (AIC) is an estimator of the relative quality 
of statistical models for a given set of data. Given a 
collection of models for the data, AIC estimates the 
quality of each model, relative to each of the other 
models. Thus, AIC provides a means for model 
selection. 
 
AIC is founded on information theory. When a 
statistical model is used to represent the process 
that generated the data, the representation will 
almost never be exact; so some information will be 
lost by using the model to represent the process. AIC 
estimates the relative amount of information lost by 
a given model: the less information a model loses, 
the higher the quality of that model. 
In estimating the amount of information lost by a 
model, AIC deals with the trade-off between the 
goodness of fit of the model and the simplicity of the 
model. In other words, AIC deals with both the risk of 
over fitting and the risk of under fitting. 
 
The Akaike information criterion is named after the 
statistician Hirotugu Akaike, who formulated it. It 

now forms the basis of a paradigm for the 
foundations of statistics; as well, it is widely used 
for statistical inference [7]. In the future if we build 
several Garch models the model with the lowest 
Akaike value will be the beat model to use.  
 
Now lest try other company like Google and let’s see 
how the model will be we do the same stapes that we 
did  with the Facebook but we need to change the data 
by using the command → GG<-getSymbols 
("GOOG",auto.assign =F) this help us  to get the 
financials data for Google and we use the chart 
command to see the chart for Google stocks price. 
After doing the commands we will get both result for 
our model and the chart Figure 3 that shows the 
Google stocks pries and how it changes since 2007: 
 

 
Figure 3 - Google stocks price chart 
 

Information Criteria 
-------------------------------
----- 
 
Akaike       12.232 
Bayes        12.241 
Shibata      12.232 
Hannan-Quinn 12.235 

 
 Conclusion 

So the Akaike is 12.232 and that means our model not 
that good and if we compare it with Facebook model 
we see that Facebook model is better than Google 
model and as we see the that we can use the model 
on Facebook stocks but we can’t use It on Google 
stocks because it more efficient to use the model 
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that can help us to find the specific information or 
details of the stock of any company. 
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